
Stephen F. Austin State University Stephen F. Austin State University 

SFA ScholarWorks SFA ScholarWorks 

Faculty Publications Forestry 

1985 

Estimating Optimal Thinning and Rotation for Mixed-Species Estimating Optimal Thinning and Rotation for Mixed-Species 

Timber Stands Using a Random Search Algorithm Timber Stands Using a Random Search Algorithm 

Steven H. Bullard 
Stephen F. Austin State University, Arthur Temple College of Forestry and Agriculture, 
bullardsh@sfasu.edu 

Hanif D. Sherali 

W. David Klemperer 

Follow this and additional works at: https://scholarworks.sfasu.edu/forestry 

 Part of the Forest Management Commons 

Tell us how this article helped you. 

Repository Citation Repository Citation 
Bullard, Steven H.; Sherali, Hanif D.; and Klemperer, W. David, "Estimating Optimal Thinning and Rotation 
for Mixed-Species Timber Stands Using a Random Search Algorithm" (1985). Faculty Publications. 71. 
https://scholarworks.sfasu.edu/forestry/71 

This Article is brought to you for free and open access by the Forestry at SFA ScholarWorks. It has been accepted 
for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, 
please contact cdsscholarworks@sfasu.edu. 

https://scholarworks.sfasu.edu/
https://scholarworks.sfasu.edu/forestry
https://scholarworks.sfasu.edu/forestry_department
https://scholarworks.sfasu.edu/forestry?utm_source=scholarworks.sfasu.edu%2Fforestry%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/92?utm_source=scholarworks.sfasu.edu%2Fforestry%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://sfasu.qualtrics.com/SE/?SID=SV_0qS6tdXftDLradv
https://scholarworks.sfasu.edu/forestry/71?utm_source=scholarworks.sfasu.edu%2Fforestry%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cdsscholarworks@sfasu.edu


Forest$ci., Vol. 31, No. 2, 1985, pp. 303-315 
Copyright 1985, by the Society of American Foresters 

Estimating Optimal Thinning and Rotation 
for Mixed-Species Timber Stands Using 
a Random Search Algorithm 

STEVEN H. BULLARD 

HANIF D. SI4ERALI 

W. DAVID KLEMPERER 

ABSTRACT. The problem of optimal density over time for even-aged, mixed-species stands is 
formulated as a nonlinear-integer programming problem with numbers of trees cut by species 
and diameter class as decision variables. The model is formulated using a stand-table projection 
growth model to predict mixed-species growth and stand-structure. Optimal thinning and final 
harvest age are estimated simultaneously using heuristic random search algorithms. For sample 
problems with two species, random search methods provide near-optimal cutting strategies with 
very little computer time or memory. Optimal solutions are estimated for problems with eight 
initial species/diameter class groups, projected for up to three discrete growth periods. Such 
solution methods merit further study for evaluating complex stand- and forest-level decisions. 
FOREST Scl. 31:303-315. 

ADDITIO•^L KEY WORDS. Combinatorial optimization, heuristics, integer programming, nonlin- 
ear programming, random search, stand-level optimization, stand-table projection. 

INCREASING COMPETITION for forest resources is resulting in more emphasis on 
stand-level decisions in forest management. Harvesting decisions can be especially 
complex for the mixed-species forests common throughout the United States 
because species groups often have pronounced differences in growth rates, abilities 
to respond to release, and values by size classes. 

Previous single-species harvest optimizations have used marginal analysis 
(Chappelle and Nelson 1964), calculus of variations (Naslund 1969, Schreuder 
1971), dynamic programming (Amidon and Akin 1968, Chen and others 1980, 
Brodie and Kao 1979, Riitters and others 1982), and nonlinear programming 
(Kao and Brodie 1980). These studies have not, however, recognized distinct size 
classes for individual species groups. Here, the problem of optimal density over 
time is formulated as a nonlinear-integer programming problem. Random search 
methods are applied to estimate optimal thinning regimes and rotations for ex- 
isting, even-aged, mixed-species stands. Lack of mixed-species growth informa- 
tion precluded an empirical application of the model. The approach is demon- 
strated for a two-species stand using assigned growth model parameters. 

The authors are Assistant Professor, Forest Economics, Mississippi State University, P.O. Drawer 
FR, Mississippi State, MS 39762 (former Graduate Research Assistant, Virginia Polytechnic Institute 
and State University), Associate Professor, Industrial Engineering-Operations Research, and Associate 
Professor, Forest Economics, Virginia Polytechnic Institute and State University, Blacksburg, VA 
24061. Financial support was provided by the U.S. Forest Service, Southeastern Forest Experiment 
Station, and the Forest Economics and Policy Section of Resources for the Future, Inc., Washington, 
D.C. Manuscript received 28 November 1983. 
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NOTATION 

a = subregion or area under the objective value probability density 
relation in which at least one solution is desired, 

bd ,• = growth model upgrowth (w = 1,..., S + 1) and mortality (w = 
S + 2 ..... 2S + 2) parameter estimates by species and diameter 
class, 

di= initial number of diameter classes by species, 
EXP = exponential function with base e, 

FC = fixed harvesting costs (sale administration, marking, etc.) per unit 
area, 

G = number of growth periods projected, 
i = index for species group, 
j = index for diameter class, 
k -- index for growth period, 

In = natural logarithm, 
L = value of cash flows expected after existing stand removal, dis- 

counted to time of final harvest, 
rn, q = indexes used for species and diameter class, respectively, in re- 

lations where i orj is fixed, 
w = index for growth model parameters, 
n = number of solutions evaluated in simple random search, or num- 

ber of solutions evaluated per stage in multistage random search, 
N R,•.C,V,M = number of trees per unit area by species, diameter class, and id.k 

growth period. Superscripts R, L C, U, and M, denote residual, 
initial, cut, upgrowth, and mortality numbers, respectively, 

Pi,• = value per tree (price per unit volume times average volume per 
tree, by species and diameter class), 

PPi.•.k = upper bound on upgrowth by species, diameter class, and growth 
period, expressed as a potential proportion for trees advancing 
one diameter class, 

Pr = probability that at least one of a set of randomly generated so- 
lutions will have an objective value within a specified upper region 
of the objective value probability density relation, 

PV = present value of future cash flows, per unit area, 
r = real discount rate for calculating present values, 
S = number of species groups, 
t = number of years per growth period, 

V/,• = average volume per tree (merchantable volume is used in order 
to determine per tree values), 

l'm.>_•,k_ • = volume per unit area of species rn in diameter classes greater than 
or equal to j, at the beginning of growth period k, and 

I't,•,-• = total volume per unit area at the beginning of growth period k. 
X• = a binary variable equal to 1 if thinning occurs and 0 otherwise. 

THINNING MODEL DEVELOPMENT 

A growth model was developed to provide post-harvest data by species and 
diameter class, which could be integrated with an optimization procedure to form 
a thinning model. The species/diameter level of resolution reflects interspecific 
growth rates and size-class value differences often found in mixed-species stands. 

GROWTH MODEL 

Adams and Ek (1974) used a modified form of a stand-table projection model 
presented by Ek (1974) to derive optimal cutting policies for uneven-aged northern 
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hardwoods. To provide volume and stand structure information, we used a stand- 
table projection approach related to the above model and consisting of upgrowth 
and mortality equations for each species/diameter class, after each growth period 
projected. The equations differ from those of Adams and Ek in that ingrowth is 
omitted for eVen-aged stands and individual species are recognized. For growth 
model details see Bullard (1983, 1985). 

Upgrowth.--The number of trees of species (i) advancing from diameter class (j) 
to (j+ 1) during growth period (k) may be expressed as a potential proportion of 
residual trees in period (k-1), reduced to an actual proportion based on stand 
density: 

where 

and 

Ni..i.•, v= (N•,;.•,_•)(PP,.z0 EX b/'•(Vr;,-0 + • bd'•(Vm._>•;,_0 
w•2 

bw i,;-<O (w= 1 ..... S+ 1), 

(1) 

Potential upgrowth is a function of diameter, species, age, and site quality and 
may be projected separately. The last bracketed term is the proportion of potential 
realized during a growth period. The negative exponential function of volume 
ensures that estimated proportions will be between 0 and 1, and will be inversely 
related to density. Density terms include total stand volume at the beginning of 
the growth interval (Vr, k-,) and terms for each species indicating volume in 
diameter classes greater than or equal to (j) at the beginning of the growth period 
(Vm,_w,k-,). Such terms reflect the relative position of each diameter class within 
the stand. 

Mortality.-- The number of trees dying in each species/diameter class during a 
growth period may also be estimated as a function of stand density: 

where 

and 

Nij.• = (Ni.•,k_lR){1 -- EXP[ bs+ 2iJ( Vr, k-1) '•- 2w=XX•f3 bw•'J( Vm,_>j,k-1) ]} (2) 

bw i,; -< O (w=S+2,...,2S+2), 

Mortality for each species/diameter class is the number of trees at the beginning 
of the growth period (N•,z •_ •) multiplied by the projected mortality proportion. 
The second term on the right side of (2) is the projected proportion dying. The 
specification ensures projections between 0 and 1, and is an increasing function 
of stand density. 

THINNING FORMULATION 

The two-equation stand-table projection system was used in formulating the thin- 
ning problem as a nonlinear-integer programming model, i.e., one with nonlinear 
terms in the objective function and/or constraints and integer valued decision 
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variables. Decision variables are cutting prescriptions, or numbers of trees har- 
vested from each species/diameter class, after each growth period projected (Nij, kc). 

A disadvantage of the nonlinear programming formulation is that inexact so- 
lution techniques are required. Such methods are only advocated when exact 
methods such as linear or dynamic programming are inappropriate, unavailable, 
or impractical (see Bullard and Klemperer 1984). In the present problem, dynamic 
programming was not used because state-space dimensionality becomes a problem 
in stand-level applications which recognize diameter classes (Hann and Brodie 
1980). The difficulties multipy when diameter classes are modeled for each species 
group represented in a mixed-species stand. Simply relaxing grid size does not 
abate the problem, since species diameter combinations expand the dynamic 
programming state-space to an impractical number of dimensions. 

Constraints.--Constraints are used to restrict the numbers of cut trees to the 

numbers projected after each growth period. In general, constraint development 
follows the methods presented by Adams and Ek (1974). Equation sets (3) through 
(6) define the residual stand after each growth period, while (7) ensures non- 
negativity for all terms in the formulation. 

R = N,,j,Z - ½ (3) 
{ i = 1, . . . , $; j = 1 .... , d•; k = O ) 

Nia, i • = N,.•.i_, • - Ni,j,k v - Ni,•,i M - Ni,j,i c (4) 
{i= 1 ..... S;j= 1;k= 1 ..... 

N,,j,i • = N,.j.i_, • - Ni,jd½ $ -- Nij. k • -- N,,zi c + N,,•_,,k v (5) 
{i = 1 ..... $;j= 2 ..... d• + k- 1; k= 1 ..... G} 

N,,j,• • = Ni.j_,.• v - N,,•.• c (6) 
{ i - 1 ..... S; j = d, + k;, k = 1 ..... G} 

N R.•,cv.•u > 0 (7) 
{i= 1 ..... S;j = 1 ..... d• + k; k=0 ..... G}. 

Harvesting may occur immediately and after each growth period, with clear- 
cutting assumed after the last growth period projected. Equation set (3) defines 
the residual stand-table only after the initial growth period (k = 0), while (4), (5), 
and (6) give residuals after each of the (G) growth periods projected. For the 
smallest diameter class (j = 1), (4) represents the number of trees at the beginning 
of the growth interval, minus the numbers projected as upgrowth and mortality, 
minus the number of trees cut. Set (5) is the number of trees in all intermediate 
diameter classes (j -- 2 ..... di + k - 1). For each of these diameters, an upgrowth 
term is added for trees advancing from the class just smaller. The number of trees 
in the largest diameter class that is reached (j -- d• +k) during each growth period 
is defined by (6) as projected upgrowth into the class, minus the number of trees 
harvested. 

Finally, relations (1) and (2) were substituted into (4), (5), and (6). Equations 
(8) and (9) translate volume terms to numbers of trees, based on average volumes 
per tree by species and diameter. 

$ d•+k--! 

Vr,•-, = • • (V•./N,,/,•-, •) (8) 
i=1 j=l 

&+k-- ! 

V,,,_>/,•_,= • (V•.qN,,,q,•_,•). (9) 
q=j 

The stand-table projection model is thereby integrated with the thinning model 
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constraints, with numbers of trees cut by species and diameter as decision vari- 
ables. The interface is achieved by using relations (8) and (9) for the volume terms" 
in the growth model equations, using the resulting upgrowth and mortality func- 
tions in constraint sets (4), (5), and (6), and simplifying and collecting terms. The 
formulation reflects alternative cutting strategies, since harvesting trees reduces 
stand density, resulting in higher proportions of upgrowth and lower proportions 
of mortality in subsequent growth periods. 

Other constraints may also be included in modeling mixed-species thinning. 
For example, constraints could ensure minimum thinning volumes if small quan- 
tifies are not marketable. For certain forest types, maximum thinning volumes 
could ensure sufficient residual stand density to prevent quality losses from epi- 
cormic branching, enlarged lower limbs, etc. Constraints may also reflect wildlife, 
recreation, or other management considerations. 

Objective Function. --Assuming final harvest after the last growth period projected, 
optimal cutting policies are estimated for 1 growth period, 2 growth periods, etc. 
The optimal harvest schedule maximizes the present value of current and future 
income •: 

Maximize: PV = • [(Po/(1 + r) )Ni.j.k c] -- XkFC/(i + r) kt] 
{No, k c} k=O i= 1 j= 1 

+ [L/(1 + OGt]}. (10) 
Summation terms are present values of timber harvested after each growth 

period, by diameter class and species. When thinning occurs, X• is I and otherwise 
is 0. Binary values may also be used in constraints representing minimum re- 
morals. Thinnings, for example, might be constrained to be greater than or equal 
to some minimum volume multiplied by X• and less than or equal to some upper 
limit multiplied by X•. Hence, if thinning occurs, volume removed must be 
between the range of prescribed values. Various implicit enumeration methods 
may be used to ensure binary decision values in mathematical programming 
models. However, for the models considered here, it is more convenient to assign 
binary values explicitly. In the solution procedures to be discussed, IF statements 
(FORTRAN or BASIC) are used to test if thinning is selected, thereby defining X•. 

The final term in (i 0) is the present value of expected cash flows after final 
harvest. If the existing stand were replaced by a perpetual series of similarly 
managed stands, for example, L would be the soil expectation value for the 
proposed series. Otherwise L is projected land sale income, or the value in year 
G(t) of an alternative use. 

Convexity and Program Size.--Convexity of the objective function and the con- 
straint set are desirable properties in nonlinear programming. Convex programs 
lack local optima which are not globally optimal, and the first-order Kuhn-Tucker 
local optimality conditions are necessary and sufficient to assure a global optimum 
(under certain constraint qualifications). Ignoring the discrete nature of the prob- 
lem for the time being, and following the growth model substitutions outlined, 
the mixed-species constraints represent nonlinear equalities and therefore a non- 
convex feasible region. It can also be shown, however, that the constraints have 
no equivalent convex structure, since they may be expressed as additions and 
subtractions of convex relationships. Therefore, even if we overlook the problem's 

discussion of valuing existing stands is presented by Clutter and others (1983, p. 226). 
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discrete character, the possibility of locally optimal solution arises in solving for 
optimal thinning and rotation with the mixed-species formulation. Although pro- 
gram size can be a computational feasibility issue in nonlinear programming, it 
is not a practical limitation with the solution methods used here. 

THINNING MODEL SOLUTION 

The nonlinear-integer programming thinning formulation is difficult to solve with 
exact methods. 2 The number of possible integer solutions can be astronomical 
for problems recognizing diameter classes by species over time. For large discrete 
problems, iterative methods without proven convergence to an optimum are often 
advocated. These are termed "heuristics" (see Silver and others 1980, or Muller- 
Merbach 1981). 

Several optimization approaches use random sampling in selecting and eval- 
uating discrete options (see Brooks 1958, Karnopp 1963, Luus and Jaakola 1973, 
Mabert and Whybark 1977, Conley 1980, 1981, and Solis and Wets 1981). We 
have applied and compared two such methods--simple random search and mul- 
tistage random search. 

SIMPLE RANDOM SEARCH 

To randomly select the number of trees to cut from each species/diameter class, 
a random number between 0 and 1 is generated and transformed to an integer 
number of trees in the species/diameter group? After obtaining random variates 
for numbers to cut from all classes recognized, cutting combinations not meeting 
volume or other constraints are rejected. If a high proportion of the cutting 
strategies generated is infeasible, random numbers may be modified so that each 
set yields a feasible combination (see Conley 1980). This problem did not arise 
in our applications. For multiple growth period problems, the random solutions 
are generated sequentially, period by period. In this manner, potential numbers 
of trees to cut after each period are limited to projections of those remaining after 
previous harvests. 

Figure 1 shows major steps in the simple random search. For each feasible 
thinning plan, the objective value is calculated and compared with the highest 
value obtained thus far. After each comparison, the higher present value (and 
associated thinning regime) is stored. The sampling process continues until a 
specified number of random solutions have been evaluated. 

Given a finite number of solutions, the relative frequency distribution of oh- 

2 Numbers of trees harvested over time are integer-valued decision variables, and selecting and 
evaluating integer thinning alternatives is a combinatorial problem. Such problems involve the "ar- 
rangement, grouping, ordering, or selection of discrete objects, usually finite in number" (Lawler 1976). 
Solving large combinatorial problems with exact methods can be difficult because the solution effort 
increases very rapidly (usually exponentially) with certain problem characteristics, such as the number 
of discrete variables (Kovacs 1980). 

3 We generated uniformly distributed (pseudo-) random numbers between 0 and 1, implying that 
numbers of trees within diameter classes are uniformly distributed. Random numbers (and subsequent 
variates) may be generated from other relative frequency distributions, however, depending on di- 
ameter and diameter class size, species, or other factors affecting the distribution within diameter 
classes. To ensure equal probabilities for each integer number of trees, the maximum number is 
incremented by one and the new range is multiplied by the random number, then rounded to the 
nearest integer. The artificially high number and the lowest number each have one-half the proper 
probability. Therefore, if the upper number results after rounding, the lowest number is assigned 
(doubling its probability). In this manner, the artificial number is never recommended for cutting, 
and all integer numbers of trees have an equal probability of selection. 
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Assign the number of growth periods to 
considered, and the number of thinning 
schedules to be evaluated. 

be 

Assign input values for the initial stand. 

Generate (randomly) a feasible thinning 
schedule and project the residual stand for 
the next growth period. Repeat until the 
specified number of growth periods has been 
considered. 

Calculate PV and compare with the optimum 
thus far. Store the solution with the 

greater PV. Has the specified number of 
thinning schedules been evaluated? 

] Y 

Write the highest PV obtained, and the 
associated thinning regime. STOP. 

FIGURE 1. Major steps in solving thinning model formulations with simple random search. 

jective function values is bounded on the right by the maximum. The goal in 
simple random search is to obtain at least one solution yielding an objective value 
within a specified subregion of the optimum or extreme value. The relative size 
of the desired subregion (a) also represents the probability that a single randomly 
selected solution will have an objective value within the specified area (a) under 
the relative frequency plot (Brooks 1958). For any given problem, therefore, the 
probability (Pr) that at least one of n random solutions yields an objective value 
within the desired upper region of the probability density relation is (Conley 1980) 

Pr=l-(1-a) ". (11) 

For problems where large numbers of samples can be selected and evaluated 
easily, the probability that at least one will yield an objective value within a small 
upper region of the density plot may be forced arbitrarily close to 1. For example, 
given a sample of (n = 10,000) feasible solutions, the probability that at least one 
is within the upper (a -- 0.001) region of the objective value density relation is 

Pr = 1 - (1 - 0.001) •ø,øøø = 0.9999548. (12) 
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Assign the number of growth periods to be 
considered, the number of stages and 
thinning schedules per stage, and the 
maximum variable ranges per stage. Also, 
set STAGE = O. 

STAGE = STAGE 

Assign input values for the initial stand. 
Define ranges for numbers of trees to cut 
based on the optimum solution thus far, and 
the maximum range assigned for the current 
stage. 

I 

Generate (randomly) a feasible thinning 
schedule and project the residual stand for 
the next growth period. Repeat until the 
specified number of growth periods has been 
considered. 

Calculate PV and compare with the optimum 
thus far. Store the solution with the 
greater PV. Has the specified number of 
thinning schedules per stage been evaluated? 

I Y 

Has the specified number of stages been •N_ _ _ 
evaluated? 

I Y 

Write the highest PV obtained, and the I 
associated thinning regime. STOP. I 

FIGURE 2. Major steps in solving thinning model formulations with multistage random search. 

The above calculation does not depend on the total number of possible solutions 
to a problem. The success of simple random search in providing near-optimal 
solutions depends on the magnitude of the objective function values for a problem, 
and on the shape of the right-hand tail of the probability density of objective 
values. 

Objective value magnitude is important since being within an upper fraction 
of the possible solutions to a problem is little consolation if the absolute difference 
between optimum and near-optimum values is large (Golden and Assad 1981). 
The necessary characteristic for the right-hand tail of the objective value density 
for a problem is that the maximum (extreme right-hand) value should not be 
isolated or at the end of an extended tail (Conley 1980). In problems with extended 
tails, obtaining a solution with an objective value within a specified region does 
not guarantee the solution will be near (in actual value to) the optimum. 
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FIGURE 3. 
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MULTISTAGE RANDOM SEARCH 

Multiple sets (or stages) of random solutions are selected and evaluated in the 
multistage approach. After each set of solutions, variable ranges are reduced, 
based on the best solution from the previous sets, thus narrowing the potential 
region in which the optimum may lie. Candidate solutions are thereby concen- 
trated in a region centered around the optimum thus far. Multistage approaches 
differ by how many sets of samples are examined, the total number evaluated 
and their distribution among stages, and the degree to which variable ranges are 
reduced from stage to stage. 

Figure 2 outlines the multistage procedure used here. A uniform number of 
thinning alternatives is evaluated at each stage. In the initial stage, the ranges 
from which thinning options are randomly selected are set equal to the initial 
number of trees in each species/diameter class. For the first set of solutions, present 
values are calculated and compared with the greatest value obtained thus far. The 
first stage incumbent (or optimum thus far) is the solution with the greatest present 
value generated by n randomly selected thinning schedules. 

Maximum ranges for numbers of trees to cut are specified for each stage. The 
ranges are narrowed in later stages and are centered around the decision variable 
values in the incumbent solution. For example, if the maximum range is specified 
as 10 trees per acre for a given species/diameter class at a particular stage, and 
the incumbent solution calls for 15 trees to be harvested, the range used for that 
class in subsequent selections will be from 10 to 20 trees per acre. If a solution 
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TABLE 1. Thinning model formulation for Problem 1.* 

Maximize PV = $201.45+0.65X(2)+4.66X(4)+O.22X(6)+O.45X(8)+O.44X(9)+3.50X(10) 
+5.03X(ll)+O.15X(12)+O.31X(13)+2.75X(14)-4X(O) 

Subject to: 

X(1) + X(2) = 49 
X(5) + X(6) = 49 

X(3) + X(4) = 39 
X(7) + X(S) = 19 

X(9)-X(1)(EXP(-.O000973X(1)-.O001515X(3)-.OOOO192X(5)-.OOOO802X(7)) 
-.tEXP(-.OO7072X(1)-.OllO169X(3)~.OO15261X(5)-.OO58289X(7))) = 0 

X(12)-X(5)(EXP(-.OOOO768X(1)-.OOOl196X(3)-.OOOO302X(5)-.OOOO633X(7)) 
-.25EXP(-.OO62733X(1)-OO97726X(3)-.OO24701X(5)-.OO51706X(7))) = 0 

X(lO)-X(3)(EXP(-.OOOO384X(1)-.OOOl137X(3)-.OOOO151X(5)-.OOOO317X(7)) 
-.7EXP(-.OO2944X(1)-.OO95712X(3)-.OOl1592X(5)-.OO24265X(7))) 
-.6X(1)EXP(-.OO7072X(1)-.OOllO169X(3)-.OO15261X(5)-.OO58289X(7)) = 0 

X(13)-X(7)(EXP(-.OOOO23X(1)-.OOOO359X(3)-.OOOOO91X(5)-.OOOO19X(7)) 
-.35EXP(-.OO61082X(1)-.OO95154X(3)-.OO24051X(5)-.OO50345X(7))) 
-.25X(5)EXP(-.OO62733X(1)-.OO97726X(3)-.OO24701X(5)-.OO51706X(7))= 0 

X(ll)-.70X(3)EXP(-.OO294•X(1)-.OO95712X(3)-.OOl1592X(5)-.OO24265X(7))= 0 

X(14)-.35X(7)EXP(-.OO6108X(1)-.OO95154X(3)-.OO24051X(5)-.OO50345X(7))= 0 

12.SX(2)+19.94X(4)+5.04X(6)+lO.55X(8) K 926X(0) 
12.SX(2)+19.94X(4)+5.04X(6)+lO.55X(8) • 370X(0) 

x(i) • 0 (i=1 ..... 14) 

*For ease of 

X(O) = Xk, 
X(1) = N R 1,2,O 

X(2) = N c 1,2,0 

X(3) = N R 1,3,0 

X(4) = N c 1,3,0 

X(5) R = N2,1, 0 
C 

X(6) = N2,1, 0 
X(7) R = N2,2, O 

presentation, the following notation is used in Table 1: 

where k=O (binary variable) 

X(S) C =N2,2, 0 
X(9) = N R 1,2,1 

X(10) = N R 1,3,1 

X(11) = N R 1,4,1 

X(12) = N R 2,1,1 

X(13) = N R 2,2,1 

X(14) R = N2,3, 1 

is obtained with a higher objective value and calls for 19 trees to be harvested 
from the combination, the new range will be from 14 to 24 trees per acre, etc. 

In this manner, each time a specified number of solutions per stage has been 
evaluated, new (narrower) maximum ranges are used. In all cases the ranges used 
are feasible: i.e., ranges are centered around current decision variable values, but 
are restricted to lie between 0 and the number of trees existing or projected for a 
given species/diameter class. Sampling continues until the specified number of 
stages has been completed. 

SAMPLE PROBLEM RESULTS. 

Problem 1.--As an initial case, a stand was defined with two diameter classes for 
each of two species. The number of trees in each class resulted in a total of 
2,000,000 possible thinning alternatives. Thinnings were constrained to be be- 
tween 30 and 50 percent of initial stand volume. Economic and growth model 
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parameters were assigned to project the 40-year-old stand for one 5-year growth 
period. The nonlinear-integer programming formulation for Problem 1 is pre- 
sented in Table 1. 

A FORTRAN program was used to evaluate all possible solutions to Problem 
1, and the overall optimum objective value was $485.76. Figure 3 shows the 
complete probability density of objective function values for Problem 1. The 
distribution is obtained by dividing the difference between maximum and min- 
imum objective values into histogram intervals, counting the number of solutions 
whose present values lie in each interval, and dividing each sum by the total 
number of feasible solutions. 

The relative frequency plot of present values for Problem 1 lacks an extended 
right-hand tail, and simple random search was expected to provide solutions near 
the optimal value of $485.76. Using sample sizes of 1,000 and 10,000, simple 
random search provided solutions with present values within 1 percent of the 
optimum, using several initial seed numbers. The FORTRAN program used for 
the simple random search was less than 100 lines and required under 10 seconds 
of execution time on an IBM 3081. 

We also solved Problem 1 with a multistage algorithm. The program was ap- 
proximately 150 lines and required up to 30 seconds of execution time for samples 
of 1,000 and 10,000 solutions for each of 6 stages. With 1,000 solutions per stage, 
the true optimal solution was generated in 3 out of 10 thais. The worst of the 
remaining estimates had a present value of $483.17. With 10,000 solutions per 
stage, the true optimum was generated once. The other 9 thais yielded a locally 
optimal solution with a present value of $483.46. 

Problem Z--The second problem was defined for a 30-year-old stand with 2 
species groups, each with 4 diameter classes, and thinning again constrained 
between 30 and 50 percent of prethinning volumes. Economic and growth model 
parameters were assigned to project the stand for 1, 2, and 3 growth periods of 
5 years each. Optimal thinning policies were therefore estimated for 1-, 2-, and 
3-growth period subproblems. Exhaustive search was impractical. The 1-growth 
period subproblem alone had a total of over 8 trillion possible thinning alterna- 
tives. 

Optimal thinning policies were estimated for each subproblem using both so- 
lution methods. Sample sizes of 1,000 and 10,000 were used with several seed 
numbers for starting the random processes. Seven stages were used for the mul- 
tistage algorithm. The FORTRAN programs ran up to 3.5 minutes, the longest 
being the multistage approach with 3 growth periods. For every trial of each 
subproblem, the multistage approach yielded higher present values than simple 
random search. 

We evaluated the sensitivity of present values and harvest schedules to changes 
in interest rates and prices, and noted that the present value relationship is not 
necessarily concave with respect to the number of growth periods projected. De- 
pending on assumed values by size classes, for example, the present value may 
increase, decrease, and increase again as sufficient growth periods are projected 
to allow growth into higher valued sizes. Optimal final harvest age, therefore, 
cannot always be determined simply by projecting increasing numbers of growth 
periods until present value decreases. 

FURTHER STUDY 

The promising results obtained with sample thinning model problems indicate 
the need for further research in estimating solutions to these and other stand- and 
forest-level problems with heuristic algorithms. Other multistage approaches, in- 
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cluding those of Luus and Jaakola (1973) and Solis and Wets (1981) may be 
considered, as well as the "biased sampling" and "improvement sampling" tech- 
niques presented by Mabert and Whybark (1977). Further analyses of mixed- 
species thinning would benefit from statistically estimated growth model param- 
eters for actual stands. 

The greatest shortcoming of random search is that the optimum objective value 
remains unknown. Hence, the degree to which heuristically estimated values 
approach the optimum is unknown. For a given problem, the shape of the right- 
hand tail of the objective value density relation may be examined for large random 
samples of solutions. This process may eliminate random sampling for some 
problems (with obviously extended tails), but cannot result in confidence in using 
the methods since the exact tail behavior is not determined. 

Further research should improve ways to quantify how close random search 
methods can come to an estimated true optimum, as discussed by Clough (1969), 
Dannenbring (1977), and Golden and Alt (1979). From a random sample of 
solutions, they derive point and/or interval estimates of the optimum value, for 
which the management plan is unknown. Sampling continues until the best so- 
lution is within a given range of the estimated optimum, as demonstrated for a 
discrete problem by McRoberts (1971). Dannenbring (1977) has evaluated several 
reduced-bias and best-fit truncation point estimators, including their performance 
in problems with adverse tail behavior. Several previously published estimators, 
and a very simple approach to confidence interval estimation, are briefly sum- 
marized by Zanakis and Evans (1981). Further random search applications in 
forestry should include optimal value estimation in developing effective stopping 
criteria for the sampling procedures. 

CONCLUSIONS 

Thinning and rotation alternatives for existing mixed-species forests were esti- 
mated using a stand-table projection growth model in a nonlinear-integer pro- 
gramming thinning formulation. Harvest options began at present and continued 
with fixed-length growth projections until final harvest. Final harvest age was 
selected by projecting the stand for increasing numbers of growth periods, choosing 
the alternative with the highest present value. Optimal thinning regimes and final 
harvest age were thus simultaneously estimated. 

Random search methods for solving forestry problems can be viable when exact 
solution methods are unavailable, when growth model or price and cost predic- 
tions are inexact, or when problems must be solved many times at low cost. The 
approach presented for mixed-species can model highly complex relationships 
using very little computer memory. Heuristic methods do not require restrictive 
assumptions such as linearity, and systems can be modeled as accurately as data 
permit. Random search algorithms require little storage and can be implemented 
on microcomputers. The type of models presented here could therefore be widely 
applied to thinning/rotation or other complex decisions in forestry. 
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