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Abstract: 2,4-Di-tert-butylphenol or 2,4-bis(1,1-dimethylethyl)-phenol (2,4-DTBP) is a common toxic
secondary metabolite produced by various groups of organisms. The biosources and bioactivities
of 2,4-DTBP have been well investigated, but the phenol has not been systematically reviewed.
This article provides a comprehensive review of 2,4-DTBP and its analogs with emphasis on natural
sources and bioactivities. 2,4-DTBP has been found in at least 169 species of bacteria (16 species, 10
families), fungi (11 species, eight families), diatom (one species, one family), liverwort (one species,
one family), pteridiphyta (two species, two families), gymnosperms (four species, one family), dicots
(107 species, 58 families), monocots (22 species, eight families), and animals (five species, five families).
2,4-DTBP is often a major component of violate or essential oils and it exhibits potent toxicity against
almost all testing organisms, including the producers; however, it is not clear why organisms produce
autotoxic 2,4-DTBP and its analogs. The accumulating evidence indicates that the endocidal regulation
seems to be the primary function of the phenols in the producing organisms.

Keywords: 2,4-di-tert-butylphenol; 2,4-bis(1,1-dimethylethyl)-phenol (2,4-DTBP); 2,4-DTBP; analogs;
natural source; bioactivities; autotoxicity; bacteria; fungi; plants; animals

Key Contribution: The comprehensive review of the biosources and bioactivities of 2,4-di-tert-
butylphenol or 2,4-bis(1,1-dimethylethyl)-phenol (2,4-DTBP) and its analogs leads us to speculate
that endocidal regulation is the primary function of these toxic phenols in the producing organisms.

1. Introduction

2,4-Di-tert-butylphenol or 2,4-bis(1,1-dimethylethyl)-phenol (2,4-DTBP) is a common natural
product that exhibits potent toxicity against almost all testing organisms, including the producing
species. The phenol has been well investigated in terms of its natural sources and bioactivities, but it has
not been systematically reviewed. A basic question has never been addressed: why does an organism
produces autotoxic 2,4-DTBP? This review has summarized the available references in both English
and Chinese to date. It will provide some basic information to better understand the physiological and
evolutionary roles of 2,4-DTBP in the producing organisms.
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2. Natural Sources

2,4-DTBP is a lipophilic phenol reported in at least 169 species of organisms (see Table 1).
2,4-DTBP was found in 16 species of bacteria in 10 families, such as nitrogen-fixing cyanobacteria [1];
Gram-positive bacteria in hot spring, soils, and food [2–7] and Gram-negative bacteria in soil and
freshwater [8–13]. Some bacteria are causal agents of infectious diseases in humans, e.g., Microcystis
aeruginosa Kützing, a species of freshwater cyanobacteria that produce neurotoxins and peptide
hepatotoxins [12]; and Vibrio alginolyticus Miyamoto et al., a marine bacterium causing otitis and
wound infection [13]. The phenol has been identified from 11 fungal species of eight families, e.g.,
edible mushrooms (Agaricus bisporus (J.E. Lange) Imbach in Europe and North America and Lentinus
edodes (Berk.) Pegler in East Asia) [14,15], inedible mushroom (Trametes suavelens (L.) Fr.) [16], common
mold species in the environment (Gliomastix murorum (Corda) S. Hughes, Aspergillus terreus Thom,
Didymium iridis (Ditmar) Fr., and Penicillium spp.) [17–21], plant fungal pathogens [22,23], and some
prevalent psychrophilic species (Cryptococcus albidus (Saito) Skinner) [24].

2,4-DTBP was also reported in different groups of plants, such as diatom Phaeodactylum tricornutum
Bohlin [25], liverwort Marchantia polymorpha L [26], and ferns Osmunda regalis L. [27] and Adiantum
venustum D. Don [28] 2,4-DTBP commonly occurs in the violate or essential oils of many seed plant
species. GC-MS analysis showed that 2,4-DTBP occurs in the dichloromethane extracts of the bark
via distillation and methanol extracts of the cones and bark of Pinus yunnanensis Franch. [29,30],
an in n-hexane extracts of the cones of Pinus kesiya var. langbianensis (A. Chev.) Gaussen ex Bui [31].
The analysis also reported that 2,4-DTBP is a major component in the water extracts of fresh needles of
Pinus tabulaeformis Carr., but not in the fallen leaves or decomposed leaves of the pine [32]. The phenol
had a low or non-detectable presence in the rhizosphere soils of a new plantation of Masson’s pine
(Pinus massoniana Lamb.); however, it became a major compound in the rhizosphere soils of the
continuous pine plantation [33].

The phenol is often found in the essential oils of flowering plants, including dicots (107 species,
58 families) and monocots (22 species, eight families) [34–69]. In jiangxiang huangtan (Dalbergia
odorifera T. Chen), it was found that 2,4-DTBP primarily accumulated in the transition tissues between
the heartwood and sapwood as the major component in the ethyl acetate extracts (9.64% based on the
dry weight) [70]. The concentration of the compound in the slow-growth heartwood is about 0.83%
but is not detected in the fast-growth sapwood when using GC-MS [70].

2,4-DTBP has been identified in various animals, such as marine sponge Zygomycale sp. of the
phylum Porifera [71], centipede Scolopendra subspinipes Leach of the phylum Arthropoda [72], spider
mite Tetranychus cinnabarinus (Boisduval) of the phylum Arthropoda [73], and Styela clava Herdman
of phylum Chordata [74]. The phenol was also isolated from a praying mantis (Mantidis ootheca)
egg-case [75].

To date, several natural analogs of 2,4-DTBP have been identified (Figure 1). 2,5-DTBP was found
in Salix [76], rhizosphere soil of Boehmeria nivea (L.) Gaudich. [77], and algal Grateloupia filicina C. Ag. [78].
2,6-DTBP was detected in seeds of Jastropa curcas L. [79] and Metaplexis japonica (Thunb.) Makino [60];
flowers of Camellia sasanqua Thunb. [80], Aquilaria sinensis (Lour.) Gilg [45], and Taxillus chinensis
(DC.) Danser [81]; and leaves of Chimonanthus spp. [82]. 3,5-DTBP was reported in flowers of Aesculus
chinensis [83], fungal Coriolus versicolor [84], Aquilaria sinensis (Lour.) Gilg [45], whole plants of Hedyotis
lancea Thunb. [85], and seeds of Plukenetia volubilis L. [86]. 4-methyl-2,6-ditertbutylphenol (butylated
hydroxytoluene or dibutylhydroxytoluene, BHT) was found in the whole plants of Praxelis clematidea
(Griseb.) R.M.King & H. Rob. and Eupatorium catarium Veldkamp [87], whole plants of Geum aleppicum
Jacp. [88], and root exudate of sorghum [65]. It is also found in fungal Nectria [89]. The lipophilic phenol
occurs in some plants, green algae, and cyanobacteria [90,91]. For example, the phenol was reported
in rice [69] and Hedyotis lancea Thunb. [85]. It was also found in the larval frass of sawyer beetles
(Monochamus alternatus Hope) [92,93], and female frass of Chinese white pine beetles (Dendroctonus
armandi Tsai et Li) [94]. It was believed to be produced by the host plant and is concentrated by larvae
as a semiochemical compound [93]. However, a later experiment indicated that the phenol was present
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in the beetle larvae only and not detected in the xylem samples of healthy trees, trees infected with
blue-stain fungi, or the wall pupal chambers of P. massoniana [95]. 4-sec-butyl-2,6-ditertbutylphenol
was found in the stem of Vernonia amygdalina Del. [96]. 2,2′-methylenebis(6-tert-butyl-4-methylphenol)
was found in the root exudate of sorghum [65]. It is noteworthy that phenols were detected in the
sorghum root exudates in the second year of replantation but not in the following years [65].
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Figure 1. Structures of 2,4-DTBP and its natural analogs.

3. Antioxidant Activities

Some investigations on the antioxidant activities of this class of lipophilic phenols were focused
on 2,4-DTBP (Figure 2, Table 2). Several in vitro methods for assaying the antioxidant activities have
been used, for example, low density lipoprotein (LDL)-oxidation tools, including a thiobarbituric
acid reactive substances (TBARS) assay, conjugated diene formation, the relative electrophoretic
mobility (REM) of ox-LDL, apoB-100 fragmentation, radical 2,2′-diphenyl-1-picrylhydrazyl (DPPH)
scavenging activity, and copper chelating activity, such as in the copper-mediated TBARS assay
(IC50: 8.20 mM), 2,2-azobis amidinopropane (AAPH)-mediated oxidation (IC50: 9.9 mM), and
3-morpholino-sydnonimine (SIN-1)-mediated oxidation (29% at 5.0 mM) [72]. 2,4-DTBP from sweet
potato extract protects against hydrogen peroxide-induced oxidative stress in the pheochromocytoma
cell line (PC12) and in mice [97]. Administration of 2,4-DTBP increased the alternation behavior in
mice injected with amyloid-beta peptide (Ab1-42) [97].

Toxins 2020, 12, x FOR PEER REVIEW 4 of 24 

 

peroxidase-dependent oxidation of BHT to form the potentially toxic BHT-quinone methide. Among 
several BHT metabolites, BHT-quinone methide (BHT-QM), 2,6-di-tert-butyl-4-hydroperoxyl-4-
methyl-2,5-cyclohexadienone (BHT-OOH), and 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHT-
CHO) have been reported to induce peroxides [102]. 

4. Anti-Inflammatory Activities 

Lipopolysaccharide (LPS), the endotoxin found in the cell walls of Gram-negative bacteria, 
triggers inflammation by activating mononuclear phagocytes (monocytes and macrophages) and 
results in the production of various pro-inflammatory cytokines. LPS administration was observed 
to increase the expression of tumor necrosis factor alpha (TNF-α) interleukin IL-6 and IL-1b genes 
significantly, while 2,4-DTBP treatments were found to decrease the expression of all three genes in 
the RAW264.7 mouse macrophage cell line [103]. BHT has shown a slight anti-inflammatory activity 
on the expression of cyclooxygenase-2 (Cox2) and TNF-α genes upon stimulation with Porphyomonas 
gingivalis (Pg) fimbriae [102]. The combination of BHT and BHA at a molar ratio of 0.5–2 provides 
potent anti-inflammatory activity, as tested by gene-expression systems for Cox2 and TNF-α in 
RAW264.7 cells [102]. The anti-inflammatory activity may be attributable to complex synergistic 
antioxidant activity [102]. 

 

Figure 2. Bioactivities and potential applications of 2,4-DTBP and its natural analogs. 

5. Cytotoxicities 

2,4-DTBP showed a remarkable cytotoxicity against HeLa cells with an IC50 value of 10 μg/mL 
[6]. 2,4-DTBP exhibited superior effect in the induction of apoptotic genes in cancer cell lines, as did 
the standard drug Cisplatin [103]. 2,4-DTBP was found to significantly increase the expression of P53 
and caspase 7 in both MCF-7 and A431 cell lines, and exhibited significantly higher activation of the 
P53 gene in MCF-7. Effect of 2,4-DTBP on caspase 7 gene expression was significantly greater in A431, 
while the effect appeared to be less pronounced in MCF-7 [103]. 

Based on hepatic and renal toxicity (histopathological changes and an increase in organ weight 
with blood biochemical changes) in rats, the respective no-observed-adverse-effect levels (NOAELs) 
for 2,4-DTBP were concluded to be 5 and 20 mg/kg/day [104]. Histologically, there were no obvious 
changes in uteri and vagina ovariectomized (OVX) CD1 mice between the 2,4-DTBP treatment and 
the control, and the uterotrophic effect of 2,4-DTBP was not observed in the range of 10 to 250 mg/kg 
using an oral gavage [105]. 

It has been reported that long-term and high quantities usage of BHT can induce liver tumors 
[106]. Due to their pro-oxidant activity, BHT-quinone and BHT-OOH have been reported to result in 
internucleosomal DNA fragmentation, which is the characteristic of apoptosis [107]. BHT-OOH was 
found through oxidative DNA damage directly, whereas BHT-quinone was found via DNA damage 
through H2O2 generation [107]. After an injection treatment, BHT can considerably increase the 

Figure 2. Bioactivities and potential applications of 2,4-DTBP and its natural analogs.



Toxins 2020, 12, 35 4 of 26

The antioxidant activity of BHT was about twice as great as that of 2,4-DTBP because two ter-butyl
groups in BHT protect the aromatic hydroxyl group, which forms a phenoxyl radical and donating a
hydrogen atom that could quench active free radicals and stop the propagation of lipid peroxidation [98].
The additional ter-butyl group in BHT may also decrease the toxicity. As a result, BHT is one of most
commonly used antioxidants for preserving food and feed, and is also listed as an antioxidant food
additive by The U.S. Food and Drug Administration (FDA) and the European Union (EU) [99,100]. As an
active ingredient from royal jelly, BHT can eliminate 75.86% of ultra-oxygen free radicals at 600 mg/L
and 84.47% of the hydroxyl free radicals at 500 mg/L [101]. BHT decreased the Malondiadehyde (MDA)
content and increased the superoxide dismutase (SOD) and glutathioneperoxidase (GSH-Px) content
in rat liver and serum [101]. The antioxidant activity of BHT can be enhanced in combination use
with synthetic 2-ter-butyl-4-methoxyphenol (BHA) and 2,4,6-tri-ter-butylphenl (TBP) [102]. BHT and
BHA are fairly heat-stable, [1] but they have been found to exert a dual pro-oxidant and antioxidant
action under certain conditions [102]. BHA can stimulate the peroxidase-dependent oxidation of BHT
to form the potentially toxic BHT-quinone methide. Among several BHT metabolites, BHT-quinone
methide (BHT-QM), 2,6-di-tert-butyl-4-hydroperoxyl-4-methyl-2,5-cyclohexadienone (BHT-OOH), and
3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHT-CHO) have been reported to induce peroxides [102].

4. Anti-Inflammatory Activities

Lipopolysaccharide (LPS), the endotoxin found in the cell walls of Gram-negative bacteria,
triggers inflammation by activating mononuclear phagocytes (monocytes and macrophages) and
results in the production of various pro-inflammatory cytokines. LPS administration was observed
to increase the expression of tumor necrosis factor alpha (TNF-α) interleukin IL-6 and IL-1b genes
significantly, while 2,4-DTBP treatments were found to decrease the expression of all three genes in the
RAW264.7 mouse macrophage cell line [103]. BHT has shown a slight anti-inflammatory activity on the
expression of cyclooxygenase-2 (Cox2) and TNF-α genes upon stimulation with Porphyomonas gingivalis
(Pg) fimbriae [102]. The combination of BHT and BHA at a molar ratio of 0.5–2 provides potent
anti-inflammatory activity, as tested by gene-expression systems for Cox2 and TNF-α in RAW264.7
cells [102]. The anti-inflammatory activity may be attributable to complex synergistic antioxidant
activity [102].

5. Cytotoxicities

2,4-DTBP showed a remarkable cytotoxicity against HeLa cells with an IC50 value of 10 µg/mL [6].
2,4-DTBP exhibited superior effect in the induction of apoptotic genes in cancer cell lines, as did the
standard drug Cisplatin [103]. 2,4-DTBP was found to significantly increase the expression of P53 and
caspase 7 in both MCF-7 and A431 cell lines, and exhibited significantly higher activation of the P53
gene in MCF-7. Effect of 2,4-DTBP on caspase 7 gene expression was significantly greater in A431,
while the effect appeared to be less pronounced in MCF-7 [103].

Based on hepatic and renal toxicity (histopathological changes and an increase in organ weight
with blood biochemical changes) in rats, the respective no-observed-adverse-effect levels (NOAELs)
for 2,4-DTBP were concluded to be 5 and 20 mg/kg/day [104]. Histologically, there were no obvious
changes in uteri and vagina ovariectomized (OVX) CD1 mice between the 2,4-DTBP treatment and the
control, and the uterotrophic effect of 2,4-DTBP was not observed in the range of 10 to 250 mg/kg using
an oral gavage [105].

It has been reported that long-term and high quantities usage of BHT can induce liver tumors [106].
Due to their pro-oxidant activity, BHT-quinone and BHT-OOH have been reported to result in
internucleosomal DNA fragmentation, which is the characteristic of apoptosis [107]. BHT-OOH was
found through oxidative DNA damage directly, whereas BHT-quinone was found via DNA damage
through H2O2 generation [107]. After an injection treatment, BHT can considerably increase the number
of mitoses in epithelial cell populations from various parts of small intestinal crypts of mice [108].
The effect may be explained by the influence of BHT on the reserve pool of cells and the longevity of
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individual stages of the mitotic cycle [108]. The BHA/BHT combination (molar ratio 1:1) has inhibited
the expression of manganese superoxide dismutase (MnSOD) mRNA in HL60 cells and reversed the
transcriptase-polymerase chain reaction (PCR)-activating caspases 3, 8, and 9 [109]. It may contribute
to the synergistically antioxidant activity of the BHA/BHT combination and radical-induced formation
of intermediates, such as quinone methide [109].

6. Insecticidal and Nematicidal Activities

2,4-DTBP exhibited significantly adulticidal, larvicidal, ovicidal, repellent, and oviposition-
deterrent activities against the spider mite Tetranychus cinnabarinus [73]. The mites exhibited the
highest run-off rate on bean leaf surfaces sprayed with 2,4-DTBP when applied at sublethal doses and
moved toward surfaces that had not been sprayed with the compound, according to Pearson’s v2 test.
The compound also showed nematicidal activity against Caenorhabditis elegans during fumigation or
soil treatment at temperatures higher than 25 ◦C [110].

BHT showed larvicidal and ovicidal properties against warehouse beetles (Trogoderma variabile
Ballion) and black carpet beetles (Attagenus megatoma (F.)) [111]. The compound also exhibited lethal
insecticidal activity against other beetle species, such as saw-toothed grain beetles (Oryzaephilus
surinamensis (L.)) and red flour beetles (Tribolium castaneum (Herbst)) [112]. The phenol may be used
as a preservative in non-toxic aqueous pesticide [113]. It can be used as an adjuvant in a dienol
formulation to stabilize p-mentha-1,3-dien-8-ol, an unstable monoterpene alcohol, as a male-produced
aggregation-sex pheromone to attract cerambycid beetles (Paranoplium gracile (Leconte)) of both sexes
in field assays [114]. BHT has been as a component to repel female sawyer beetles [115].

7. Antibacterial Activities

Extracellular polymeric substances (EPS) play crucial roles in biofilm formation and biocorrosion,
resulting in heavy economic loss in an industrial setup. 2,4-DTBP can modulate the secreted EPS of
Serratia marcescens, which in turn could facilitate the disruption of biofilms, as well as favoring the
diffusion of antimicrobials into the cell aggregates, resulting in the eradication of persistent biofilms [116].
2,4-DTBP can be used to enhance the efficacy of conventional antibiotics. Intercellular communication in
bacteria (quorum sensing (QS)) is an important phenomenon in disease dissemination and pathogenesis
that controls biofilm formation. 2,4-DTBP controls QS-mediated biofilm formation and simultaneously
increases the hydration of the cell wall, which results in reduced biofilm formation [13].

2,4-DTBP isolated from thermophilic Bacillus licheniformis in an Algerian hot spring showed
bioactivity against two multidrug resistance bacteria Pseudomonas aeruginosa and Staphylococcus aureus
in pure and mixed cultures that were investigated using a radial diffusion assay at 55 ◦C [2]. The phenol
from Bacillus, in association with seaweed, was reported to exhibit a dose-dependent antibiofilm
activity against group A Streptococcus bacterium [3].

8. Antiviral Activity

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) and plaque reduction assays showed
that 2,4-DTBP exhibited significant anti-coxsackievirus B-3 (CVB-3) and anti-herpes virus type 2 (HSV-2)
activities [117].

9. Antifungal Activities

2,4-DTBP was found to be effective against an agriculturally important root-rot fungus Fusarium
oxysporum by inhibiting spore germination and hyphal growth [10]. During the fungal spore
germination, 2,4-DTBP completely inhibited the germination by preventing the emergence of a
normal germ tube and led to the abnormal branching and swelling of hyphae. In such a case, 2,4-DTBP
may be binding with β-tubulin in microtubules, inhibiting their proliferation and suppressing their
dynamic instability as the microtubules are the cytoskeletal polymers in eukaryotic cells and the loss of
microtubules should negatively affect the growth rate of spore germination, with an expected reduction
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in fungal growth in vitro. [10] 2,4-DTBP distinctly reduced the mycelial growth of Phytophthora capsici
by approximately 50% at 100 µg/mL relative to the control [8]. The germinated seeds of pepper treated
with 2,4-DTBP significantly reduced radicle infection by P. capsici without radicle growth inhibition [8].

2,4-DTBP had a significant inhibition effect on the mycelium growth at the early stage of culturing
tomato leaf mold (Cladosporium fulvum) and 0.1 mmol/L of 2,4-DTBP had the best inhibition effect when
the mycelium had grown for seven days [118].

The mycelium growth of Verticillium dahliae was drastically decreased with increasing
concentrations of 2,4-DTBP (0.50 to 2.00 mmol/L) [119].

2,4-DTBP can be produced in some species of Aspergillus [18], Penicillium [20,21], and Fusarium [23],
but experiments showed the phenol could inhibit the growth of these fungi. Disc diffusion assays
showed that 2,4-DTBP (2 mg/25 mL) prevented the fungal mycelial growth of Aspergillus niger,
F. oxysporum, and Penicillium chrysogenum on wheat grains [6]. 2,4-DTBP produced from environmental
bacterium Shewanella algae strain YM8 significantly reduced the mycelial growth and conidial
germination in mold Aspergillus [11]. 2,4-DTBP could inhibit Aspergillus flavus mycelial growth
7 dpi on potatodextrose agar (PDA) medium at a 5 µg/L concentration and complete inhibition
of mycelial growth was observed at 100 µg/L. At 200 µg/L, the compound completely inhibited
the germination of conidia. The antimicrobial activity of 2,4-DTBP appeared to correlate with its
antioxidative activity because it was able to inhibit the reactive oxygen species (ROS) production in
both Aspergillus and Phytophthora cinnamomi [120]. Thus, the phenol has potential in the development
of biopreservatives and dietary antioxidants for food applications.

2,4-DTBP exhibited fungicidal potential at higher concentrations where fluconazole failed
to act completely. Various antibiofilm assays and morphological observations revealed that
2,4-DTBP inhibited and disrupted biofilms of Candida albicans via the possible inhibition of hyphal
development [101]. It also inhibited the production of hemolysins and phospholipases, and secreted
aspartyl proteinase, which are the crucial virulence factors required for the invasion of C. albicans [121].

10. Phytotoxicity: Allelopathy and Autotoxicity

2,4-DTBP shows potential as a natural and environmentally friendly herbicide for weed
management [122]. 2,4-DTBP from Chrysanthemum indicum inhibited seed germination and seedling
growth of lettuce (Lactuca sativa var. ramosa Hort.), romaine lettuce (L. sativa L.), and rapeseed (Brassica
napus L.) [63].

2,4-DTBP extracted from the rhizome of cogongrass (Imperata cylindrical (L.) P. Beauv.) was
found to have allelopathic effects on the germination and seedling growth of weedy plants under
soilless conditions; for instance, 2,4-DTBP at 0.1 mg/mL showed a 78–95% inhibition of root and shoot
growth of beggar ticks (Bidens pilosa L.), leucaena (Leucaena leucocaphala L. de Wit), and barnyardgrass
(Echinochloa crus-galli (L.) Beauv) [123]. Lab assays showed that leachates of cogongrass are toxic to
ryegrass and lettuce, but not toxic to cogongrass [124]. However, another report showed that boiling
water extracts of cogongrass rhizomes that contain catechol, chlorogenic acid, isochlorogenic acid,
neochlorogenic acid, p-coumaric acid, p-hydroxybenzaldehyde, scopolin, and scopoletin not only
significantly inhibited the seedling growth of five other plant species, but also suppressed cogongrass
growth [125]. A later investigation indicated that 2,4-DTBP inhibited 100% of the seed germination
and growth of cogongrass at the concentration of 0.1 mg/mL [123].

The phenol also showed toxicity on the root and leaf tissues of the grassy weed Leptochloa chinensis
(L.) Nees and broadleaf weed Hedyotis verticillata (L.) Lam [126] The phytotoxic effect of 2,4-DTBP
on these two weeds became apparent at seven days and 14 days after treatment with symptoms of
lamina wilting and necrosis, respectively [126]. After a 2,4-DTBP treatment, both had abnormal and
much shorter root hairs compared to those of untreated plants. 2,4-DTBP reduced the shoot biomass
growth of L. chinensis and H. verticillata by 50% when applied at concentrations of 50 and 200 µg/mL,
respectively [122]. Chuah et al. found that 2,4-DTBP isolated from Napier grass (Pennisetum purpureum)
exhibited potent herbicidal activity, whereby it completely prevented the root growth of L. chinensis in
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soil at an application rate as low as 0.60 kg a.i. ha−1 [127]. 2,4-DTBP induces oxidative stress through the
enhanced generation of reactive oxygen species, which cause lipid peroxidation, membrane damage,
and the activation of antioxidant enzyme systems, and thus cause a great reduction in chlorophyll
content, thereby decreasing chlorophyll fluorescence, transpiration, and the net photosynthetic rate
in the leaf tissues [121]. 2,4-DTBP has potent herbicidal properties that can alter the chloroplast
ultrastructure, thereby reducing physiological activity of these weedy plants [128]. The present
findings imply that 2,4-DTBP may potentially be developed as a soil-applied natural herbicide for the
control of L. chinensis and perhaps other weeds in an aerobic rice system [127,129].

It was reported that 2,4-DTBP from P. massoniana significantly inhibited the seed germination, seed
viability, hypocotyl and radicle growth, and seedling growth of Masson’s pine at 0.25–1.0 mg/mL [33].
Another autotoxic study found that 2,4-DTBP had a toxic effect on microorganisms in the rhizosphere
soil of hop (Hamulus lupulus L.) and affected the photosynthesis and growth of hop seedlings [130,131].
2,4-DTBP had a significant inhibitory effect on the plant immune system and seed germination
of Atractylodes macrocephala [132]. 2,4-DTBP from root exudates of chilli pepper showed a medium
inhibition against the seed germination and seedling growth of chilli pepper at more than 2 mmol/L [133].
The growth of eggplants was stunted at high concentrations (0.10–1.00 mmol L−1) [104]. 2.5-DTBP is
one of the compounds responsible for soil sickness in the field of Boehmeria nivea [77]. The results of a
pot experiment indicated that 2,4-DTBP first significantly decreased and then increased the abundance
of culturable bacteria, fungi, and actinomycetes of the rhizosphere soil after treatment [90,91]. 2,4-DTBP
from the bulb of Lilium davidii var. willmottiae and Fusarium display a synergetic effect on the Fusarium
wilt in the lily [134].

11. Conclusions

2,4-DTBP is a toxic lipophilic phenol reported in at least 169 species of organisms, such as
bacteria (16 species of 10 families), fungi (11 species of eight families), diatom (one species), liverwort
(one species), pteridiphyta (two species of two families), gymnosperms (four species of one family),
dicots (107 species of 58 families), monocots (22 species of eight families), and animals (five species
of five families). To date, several analogs of 2,4-DTBP have been identified in bacteria, algae, fungi,
plants, and insects, such as 2,5-DTBP, 2,6-DTBP, 3,5-DTBP, BHT, 4-sec-butyl-2,6-ditertbutylphenol, and
2,2’-methylenebis(6-tert-butyl-4-methylphenol).

The antioxidant and anti-inflammatory activities of 2,4-DTBP have been emphasized in many
publications. More importantly, however, the phenol exhibited a broad toxicity in all testing organisms,
including the producers; for example, cytotoxicity in human cells and animals, insecticidal and
nematicidal activities, antimicrobial activities, and phytotoxicities. However, the available data could
not explain why an organism produces such toxic 2,4-DTBP. The endocide theory hypothesizes that
an organism is more sensitive to its own endogenous metabolites than external molecules and thus
an endocidal compound commonly occurring in different species has a broad spectrum of toxicity or
low selective activity [135]. 2,4-DTBP provides a good example. This phenol commonly occurs in
diversified organisms and has a potent toxicity against almost all testing organisms.

The following aspects of 2,4-DTBP need to be addressed in future investigations. For example,
2,4-DTBP is usually a major component of volatile oils in many organisms, but its biosynthesis site
is not known. A recent report showed that healthy rice plants had level of 2,4-DTBP similar to the
plants of the same species following insect herbivory and viral infection [69]; however, a carefully
designed experiment is needed to determine whether the production of this phenol can be induced
under stresses. Also, the presence of 2,4-DTBP analogs in organisms are often independent of 2,4-DTBP;
it is important to elucidate the physiological role of these analogs in the producers. In addition, the
bioactivities and potential applications of most analogs of 2,4-DTBP have not been well investigated,
although BHT has been commonly used as antioxidants for preserving food and feed.
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Table 1. Natural sources of 2,4-di-tert-butylphenol (2,4-DTBP).

Family Biosource Tissues Ref.

Bacteria

Bacillaceae
Bacillus licheniformis [2]

B. subtilis Ehrenberg [3]

Flavobacteriaceae Flavobacterium johnsoniae (Stanier)
Bernardet et al. [8,9]

Microcystaceae Microcystis aeruginosa Kützing [12]

Arthrobacter sp. [4]

Nostocaceae
Nostoc spp. [136]

Anabaena oryzae F.E. Fritsch
A. azotica Ley [136]

Paenibacillaceae Paenibacillus polymyxa (Prazmowski)
Ash et al. [137]

Pseudomonadaceae Pseudomonas monteilii Elomari et al. [10]

Shewanellaceae Shewanella algae Simidu et al. [11]

Streptococcaceae Lactococcus sp. Cell-free supernatant [6]

Streptomycetaceae Streptomyces globosus Waksman [4]

S. mutabilis Pridham et al. [7]

Vibrionaceae Vibrio alginolyticus Miyamoto et al. Cell-free culture
supernatant [13]

Fungi

Agaricaceae Agaricus bisporus (J.E. Lange) Imbach [14]

Bionectriaceae Gliomastix murorum (Corda) S. Hughes [17]

Glomerellaceae Colletotrichum gloeosporioides (Penz.)
Penz. & Sacc. [22]

Nectriaceae Fusarium tricinctum (Corda) Saccardo [23]

Omphalotaceae Lentinus edodes (Berk.) Pegler Caps and stipes [15]

Polyporaceae Trametes suavelens (L.) Fr. [16]

Tremellaceae Cryptococcus albidus (Saito) Skinner Cell-free extract [24]

Trichocomaceae

Aspergillus terreus (Thom) [18]

Didymium iridis (Ditmar) Fr. [138]

Penicillium flavigenum Frisvad &
Samson Cells [20]

Penicillium sp. Culture [21]

Diatom

Phaeodactylaceae Phaeodactylum tricornutum Bohlin Cells [25]

Liverwort

Marchantiaceae Marchantia polymorpha L. Whole thallus [26]

Pteridophyta

Osmundaceae Osmunda regalis L. [27]

Pteridaceae Adiantum venustum D. Don [28]

Gyumnasperms
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Table 1. Cont.

Family Biosource Tissues Ref.

Pinaceae

Pinus kesiya var. langbianensis (A.chev.)
Gavssen. Cones [31]

P. massoniana Lamb. Rhizosphere soil [33]

P. tabulaeformis Carr. Needles [139]

P. yunnanensis Franch. Cones and bark [129,140]

Dicots

Amaryllidaceae Allium fistulosum L. Root exudates [141]

Apiaceae Anethum graveolens L. [142]

Centella asiatica (L.) Urban Leaves [143]

Araliaceae Panax quinquefolius L. Leaves and roots [144]

Asclepiadaceae Metaplexis japonica (Thunb.) Makino Seeds [60]

Asteraceae

Acroptilon repens (L.) D.C. Aerial part [145]

Artemisia annua L.

Leaves [34]

A. apiacea Hance

A. japonica Thunb.

A. capillaris Thunb.

A. argyi H.Lév. & Vaniot

A. eriopoda Bunge

A. tschernieviana Besser Aerial parts [146]

Atractylodes coreana (Nakai) Kitam Rhizomes [147]

A. macrocephala Koidz Rhizomes [132]

Chrysanthemum indicum L.
Leaves, stem, rot
exudates, and
rhizosphere soils

[63]

Gynura cusimbua (D. Don) S. Moore Aerial parts [148]

Xanthium sibiricum Patr. Fruits and aerial parts [149]

Begoniaceae Begonia malabarica Lam. Fresh plants [150]

Boraginaceae Heliotropium indicum L. Aerial parts [151]

Brassicaceae
Brassica oleracea var. capitata F. Rubra Leaves [152]

B. napus L. Seeds [153]

Cactaceae Pereskia bleo (Kunth) de Candolle Leaves [154]

Caeselpiniaceae Bauhininia variegata (L.) Benth. Leaves [155]

Calycanthaceae

Chimonanthus Lindl. [156]

C. praecox (L.) Link.

Leaves [82]

C. zhejiangensis M.C. Liu

C. salicifolius S.Y. Hu

C. nittens Oliv.

C. grammatus M.C. Liu

C. campanulatus R.H.
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Table 1. Cont.

Family Biosource Tissues Ref.

Cannabaceae Humulus lupulus L. Rhizosphere soils [131]

Capparaceae Crateva religiosa G. Forst. Stems [157]

Caprifoliaceae Lonicera maackii (Rupr.) Maxim. Fruits [64]

Caricaceae Carica papaya L. Seeds [158]

Caryophyllaceae Spergularia marina (L.) Besser Aerial part [159]

Combretaceae Terminalia travancorensis Wight & Arn. Bark [160]

Convolvulaceae Ipomoea batatas (L.) Lam. Tubers [97]

Cornaceae Cornus officinalis Sieb. Et Zucc. Fruits [161]

Cucurtibitaceae Cucurbita moschata (Duch. ex Lam.)
Duch. ex Poiret Fruits [56]

Crassulaceae Rhodiola imbricata Edgew. Roots [162]

Equisetaceae Equisetum arvense L. Whole plant [163]

Ericaceae Rhododendron dauricum L. Leaves [48]

Euphorbiaceae

Croton bonplandianum Baill Leaves [164]

Phyllanthus debilis Klein ex Willd. Leaves [165]

Sauropus rostratus Miq. Leaves [55]

Fabaceae

Albizia julibrissin Durazz Leaves and stems [49]

Dalbergia odorifera T. Chen Wood [166]

Humboldtia unijuga Bedd. Roots [103]

Glycine max (L.) Merr Root secretion [167]

Mucuna pruriens (L.) DC. Seeds [168]

Vigna radiata (L.) R. Wilczek Seeds [169]

Gentianaceae
Gentiana apiata N. E. Br. Whole plants [46]

G. tibetica King ex J.D. Hooker Flowers [170]

Hydrocharitaceae Hydrilla verticillata (L.f.) Royle Exudates [171]

Juglandaceae Juglans regia L. Root exudates [172]

Lamiaceae

Sphenodesme involucrata var. paniculata
(C. B. Clarke) Munir Leaves [173]

Perilla frutescens (L.) Britton Leaves [174]

Salvia miltiorrhiza Bunge Leaves and roots [175]

Lauraceae

Cinnamomum longepaniculatum
(Gamble) N. Chao ex H. W. Li Leaves [176]

C. loureirii Nees Bark [177]

Lindera aggregata (Sims) Kosterm Roots [178]

L. angustifolia (W. C. Cheng) Nakai.
L. rubronervia (Gamble) Rehder. Xylem [179]

Persea americana Mill. Roots [120]

Loranthaceae
Loranthus micranthus L. Fresh leaves [180]

L. pentapetalus Roxb. Leaves [181]

Viscum ovalifolium Wallich ex Candolle Leaves [181]

Malvaceae Cola nitida (Vent.) Schott & Endl. Fruits [182]
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Table 1. Cont.

Family Biosource Tissues Ref.

Melastomataceae Memecylon umbellatum Burm. f Leaves [183]

Menispermaceae Tinospora cordifolia (Willd.) Hook. f. &
Thoms. Embryogenic callus [184]

Myrtaceae

Eucalyptus globulus L. Leaves [185]

E. grandis W. Hill ex Maiden Root [186]

Eugenia dysenterica D.C. Fruits [187]

Nelumbonaceae Nelumbo nucifera Gaertn. Rhizomes [188]

Oleaceae Olea europaea L. Stems [117]

Paeioniaaceae Paeionia lactiflora Pall. Root [189]

Papaveraceae Eomecon chionantha Hance [67]

Phyllanthaceae Phyllanthus emblica L. Fruits [61]

Sauropus rostratus Miq. Leaves [55]

Piperaceae Piper nigrum L. Seeds [190]

Plumbaginaceae Plumbago zeylanica L. Roots [191]

Polygonaceae
Calligonum polygonoides L. Fruits and stems [192]

Polygonum viscosum Buch-ham Leaves [193]

Primulaceae Lysimachia foenum-graecum Hance [194]

Ranunculaceae

Aconitum carmichaeli Dibx. Root [68]

Clematis connata D.C. Whole plant [195]

Consolida regalis Gray Stem and leaves [196]

Rosaceae

Chaenomeles sinensis C.K. Schneid. Fruits [197]

Prunus persica (L.) Batsch Roots [198]

Rosa iberica Stev. Hips [199]

Sibiraea angustata (Rehd.)
Hand.-Mazz. Infructescence [54]

Rubiaceae Rubia cordifolia L. Stems [200]

Rutaceae

Zanthoxylum planispinum Sieb. et
Zucc. Litters [201]

Nauclea diderrichii (De Wild. & T.
Durand) Merrill Leaves [202]

Sapindaceae Koelreuteria paniculata Laxm. Leaves [203]

Saururaceae Houttuynia cordata Thunb. Aerial part [66]

Scrophulariaceae Verbascum phlomoides L. Flowers [204]

Solanaceae

Capsicum annuum L. Root exudates [133,205]

Solanum lycopersicum var. cerasiforme
(Dunal) A.Gray Fruits [206]

S. melongena L. Root exudates [207]

Withania coagulans (Stocks) Dunal Leaves and
micropropagated plant [208]

Styracaceae Sinojackia sarcocarpa L.Q. Lou Drupes [209]

Theaceae Camellia sinensis (L.) Kuntze Leaves [210]
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Table 1. Cont.

Family Biosource Tissues Ref.

Thymelaeaceae Aquilaria sinensis (Loureiro) Sprengel Resin [211]

Urticaceae
Boehmeria nivea (L.) Gaudich. Rhizosphere soil [77]

Urtica dioica L. Leaves [212]

Violaceae Viola betonicifolia Sm. Whole plant [213]

Vitaceae Ampelopsis grossedentata
(Hand.-Mazz.) W.T. Wang [214]

Monocots

Araceae Amorphophallus campanulatus (Dennst.)
Nicolson Tuber [215]

Arecaceae Cocos nucifera L. (coconut) Fruit juice [216]

Commelinaceae Murdannia nudiflora (L.) Brenan Whole plant [62]

Cyperaceae

Cyperus rotundus L. Rhizomes [217]

Heleocharis dulcis (Burm. f.) Trin. Rhizomes [136]

Kyllinga triceps Rottbøll [218]

Liliaceae Lilium davidii var. willmottiae (E.H.
Wilson) Raffill Bulb [134]

Musaceae Musa spp. Root [219]

Orchidaceae
Dendrobium moniliforme (L.) Sw. Flowers [220]

Gastrodia elata Blume Rhizomes [125]

Palmae
Phoenix canariensis Chabaud
Washingtonia filifera (Lind.) H. Wendl.
Phoenix roebelenii O’Brien

Leaves [221]

Poaceae

Echinochloa crusgalli (L.) Beauv Root exudates [222]

Imperata cylindrica (L.) Beauv Rhizome and root
exudates [123]

Oryza sativa L. Root exudate [223]

Pennisetum orientale Rich. Aerial part [47]

Pennisetum purpureum Schumach. Culm and leaves [127,129]

Phyllostachys pubescens (Pradelle)
Mazel ex J. Houz. Fresh parenchyma [224]

Sorghum bicolor (L.) Moench Root exudate [65]

Spartina cynosuroides (L.) Roth Fresh grass [225]

Triticum durum L. Seeds [226]

Zingiberaceae Zingiber cassumunar Roxb. Rhizomes and leaves [227]

Animals

Mantidae Mantidis ootheca Egg cases [75]

Mycalidae Zygomycale sp. [71]

Scolopendridae Scolopendra subspinipes Leach Dried bodies [72]

Styelidae Styela clava Herdman [74]

Tetranychidae Tetranychus cinnabarinus (Boisduval) [73]



Toxins 2020, 12, 35 13 of 26

Table 2. The bioactivities of 2,4-di-tert-butylphenol (2,4-DTBP) and its analogs.

Bioactivities Chemical
Name Experimental Model Treatment Doses Cellular and

Molecular Targets Ref.

Antioxidant
Activities

2,4-DTBP

TBARS assay IC50: 8.20 mM LDL-oxidation [72]

Human plasma LDL IC50: 9.9 mM AAPH-mediated
oxidation [72]

Human plasma LDL 5.0 mM SIN-1-mediated
oxidation [72]

PheochromocytomPC12
cells and mice 2–10 mg/100mL Hydrogen-peroxide-

induced oxidative stress [97]

Mice injected with
amyloid-beta peptide
(Ab1-42)

5–40 mg/kg Alternation behavior [97]

BHT

Ultra-oxygen-free
radical 600 mg/L Radical scavenging [101]

Hydroxyl-free radical 500 mg/L Radical scavenging [101]

Liver and serum of rat 100-800 mg/L MDA, SOD, and
GSH-PX content [101]

Anti-
Inflammatory
Activities

2,4-DTBP RAW264.7 mouse
macrophage cell line 50 and 100 µg/mL TNF-α, IL-6, and IL-1b

genes [103]

BHT RAW264.7 cells 10 µM
Cox2 and TNF-α genes
upon stimulation with
Pg

[102]

Cytotoxicities

2,4-DTBP

HeLa cells IC50 value of 10
µg/mL Cytotoxicity [6]

MCF-7 and A431 cell
lines 50 and 100 µg/mL P53 and caspase 7

generation [103]

Rats 5 and 20 mg/kg/day
Respective
no-observed-adverse-effect
levels (NOAELs)

[104]

Uteri and vagina
ovariectomized (OVX)
CD1 mice

10–250 mg/kg by oral
treatment Uterotrophic effect [105]

BHT

32P-labeled DNA
fragments 50–500 µM DNA damage [107]

Small intestinal crypts
of mice Number of mitoses [108]

HL-60 and HSC-2 cells 0.2–0.3 mM

Manganese superoxide
dismutase (MnSOD)
and reverse
transcriptase-polymerase
chain reaction (PCR)

[109]
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Table 2. Cont.

Bioactivities Chemical
Name Experimental Model Treatment Doses Cellular and

Molecular Targets Ref.

Insecticidal and
Nematicidal
Activities

2,4-DTBP

Spider mite Tetranychus
cinnabarinus

LC50 values of
1256.51, 625.39, and
743.64 ppm

Adulticidal, larvicidal,
ovicidal, repellent, and
oviposition-deterrent
activities

[73]

Caenorhabditis elegans 0.5–4 g/L Nematicidal activity [101]

BHT

Trogoderma variabile
Ballion and Attagenus
megatoma (F.)

0.5 or 2.0% Larvicidal and ovicidal
activity [111]

Oryzaephilus
surinamensis (L.), and
Tribolium castaneum
(Herbst)

10–45 mM Lethal insecticidal
activity [112]

A non-toxic aqueous
pesticide 1:10 to about 1:600 Preservative treatment [113]

Paranoplium gracile
(Leconte) 5% test solution

Stabilize a
male-produced
aggregation-sex
pheromone

[114]

Female Monochamus
alternatus Repellent activity [115]

Antibacterial
Activities

2,4-DTBP

Biofilm of Serratia
marcescens 250–300 µg/mL

Secreted etracellular
polymeric substances,
quorum sensing, and
hydration of the cell
wall

[13,116]

Pseudomonas aeruginosa
and Staphylococcus
aureus in pure and
mixed culture

Antibacterial potency [2]

Group A Streptococcus
bacterium 16–48 µg/mL Antibiofilm activity [3]

Antiviral
Activity 2,4-DTBP

Coxsackievirus B-3
(CVB-3) and herpes
virus type 2 (HSV-2)

6.32 ± 0.67 and 5.24
± 0.82 Antiviral activity [117]

Antifungal
Activities

2,4-DTBP

Spore and hyphae
growth of Fusarium
oxysporum

1–500 µg/mL β-tubulin in
microtubules [10]

Phytophthora capsici 100 µg/mL Mycelial growth [8]

Pepper seed infected
by P. capsici 1–100 g/mL Radicle infection [8]

Cladosporium fulvum 0.1 mmol/L Mycelium growth [118]

Verticillium dahliae 0.50 to 2.00 mmol/L Mycelium growth [119]

Aspergillus niger, F.
oxysporum and
Penicillium chrysogenum
on wheat grains

2 mg/25 mL Fungal mycelial growth [6]

Aspergillus 5–200 µg/L
Mycelial growth and
conidial germination
ROS production

[11,120]

Biofilms of Candida
albicans 2.5–100 µg/mL

Hemolysins,
phospholipases, and
aspartyl proteinase

[121]
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Table 2. Cont.

Bioactivities Chemical
Name Experimental Model Treatment Doses Cellular and

Molecular Targets Ref.

Allelopathy 2,4-DTBP

Seed and seedling of
Lactuca sativa var.
ramosa Hort. and L.
sativa L.

0–0.10 mmol/L Seed germination and
seedling growth [63]

Seed and seedling of of
Bidens pilosa L. and
Leucaena leucocaphala L.
de Wit

0.1 mg/mL Root and shoot growth [123]

Root and leaf tissues of
Leptochloa chinensis (L.)
Nees and Hedyotis
verticillata (L.) Lam

50 and 200µg/mL
Lamina wilting and
necrosis, and root and
shoot growth

[122,
126]

L. chinensis in soil 0.60 kg a.i. ha−1 Root growth [127]

Leaf of weed plant 2.5–100 µg/mL Reactive oxygen species
and chloroplasts

[121,
128]

Seed and seedling
Atractylodes
macrocephala

0.1, 1, and 10 mmol/L Plant immune system [132]

Rhizosphere soil of
Litchi chinensis Sonn. Abundance [90]

Autotoxicity 2,4-DTBP

Seed and seedling of of
Imperata cylindrical (L.) 0.1 mg/mL Seed germination and

growth [123]

Seed and seedling of
Masson′s pine 0.25–1.0 mg/mL

Seed germination, seed
viability, hypocotyl and
radicle growth, and
seedling growth

[33]

Microorganism in the
rhizosphere soil of
Hamulus lupulus L.

7.5 and 15 mmol/m2 Photosynthesis and
growth of hop seedlings

[130,
131]

Seed and seedling of of
Brassica napus L.,
Echinochloa crus-galli
(L.) Beauv

0.1 mg/mL Root and shoot growth [123]

Seed and seedling of of
Brassica napus L. 0–0.10 mmol/L Seed germination and

seedling growth [63]

Seed and seedling
chilli pepper More than 2 mmol/L Seed germination and

seedling growth [133]

Seedling of eggplant 0.10–1.00 mmol/L Seedling growth [104]

Bulb of Fusarium Fusarium wilt in the lily [134]

2,5-DTBP Boehmeria nivea Soil sickness in the field [77]
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