2017

Phenolics from the Fruits of Maclura pomifera

Zushang Su
National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University

Ping Wang
National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University

Wei Yuan
National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University

Greg Grant
Stephen F. Austin State University

Shiyou Li
National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University

Follow this and additional works at: https://scholarworks.sfasu.edu/ncpc_articles

Part of the [Pharmacology, Toxicology and Environmental Health Commons](https://scholarworks.sfasu.edu/ncpc_articles), and the [Pharmacy and Pharmaceutical Sciences Commons](https://scholarworks.sfasu.edu/ncpc_articles)

Tell us how this article helped you.

Repository Citation

Su, Zushang; Wang, Ping; Yuan, Wei; Grant, Greg; and Li, Shiyou, "Phenolics from the Fruits of Maclura pomifera" (2017). *NCPC Publications and Patents*. 51.
https://scholarworks.sfasu.edu/ncpc_articles/51

This Article is brought to you for free and open access by the National Center for Pharmaceutical Crops at SFA ScholarWorks. It has been accepted for inclusion in NCPC Publications and Patents by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.
Two new compounds, maclurin A (I) and maclurin B (2), and six known ones, ononin (3), pterofuran (4), osajin (5), pomiferin (6), 3,4-dihydroxybenzoic acid (7), and 2,3,4-trihydroxybenzoic acid (8) were isolated from the fruit of *Maclura pomifera*. Compounds 3 and 4 were isolated from the genus for the first time. Structure elucidation was achieved by spectroscopic measurements and by comparison with literature data. Compounds 2-4 exhibited activities against the cancer cell lines A549 and Panc-28 with GI₅₀ values from 18.1 to 32.2, and 20.6 to 43.5 µM, respectively. Compounds 2 and 4 also showed cytotoxicity against HCT 116 with GI₅₀ values of 47.2 and 24.4 µM, respectively.

Keywords: *Maclura pomifera*, Osage orange, Moraceae, Bishomoflavone, 2-Arylbenzofuran, Cytotoxicity.

Maclura pomifera (Raf.) C.K. Schneid, known as Osage orange, is a small deciduous tree of the mulberry family (Moraceae). It is native to eastern Texas, southeastern Oklahoma, southwestern Arkansas, and the extreme northwest corner of Louisiana in the United States [1-2]. The wood is hard, durable, resistant to decay, and has been primarily used for tool handles and fence posts [1]. Seed oil of Osage orange was investigated as a low-cost, non-food, high-oil-producing feedstock source for production of biodiesel [3]. Elemol, a sesquiterpene extracted from the essential oil of Osage orange fruit, was found to be repellent to German cockroaches [4]. Previous chemical studies led to the isolation and characterization of flavonoids [5a-5f], xanthones [5e] and triperpenoids [5g, 5h]. Among these, prenylated isoflavones are the major bioactive components. Osajin and pomiferin and their linear isomers, scandenone and aururalins showed anticancer, antibacterial, antidiabetic, anti-inflammatory and antinociceptive properties [5b,6,7]. In particular, pomiferin has strong activity against the superoxide anion in a photochemiluminescence (PCL) assay system [6]. Scandenone was reported to have the potential to interact with PDE5 and could be investigated as a novel inhibitor [5f]. Here we report two new and six known phenolic compounds isolated from the fruit of Osage orange and their cytotoxicities.

Compound 1 has the molecular formula C₁₇H₁₄O₆ as established by the molecular ion peak at m/z 315.0860 [M + H]⁺ (Calcd. for C₁₇H₁₄O₆, 315.0869) in the HR ESIMS. The ¹H-NMR spectral data (Table 1) of 1 indicated the presence of one singlet aromatic proton at δH 6.16, and two pairs of an ABX spin system, one oxygennated proton (CH) at δH 5.74 and two sp³ protons (CH₂) at δH 2.47 and 3.02. The ¹³C-NMR spectrum displayed 17 signals including 15 aromatic carbons. In the HMBC spectrum, the singlet proton δH 6.16 coupling to the typical carbon signal (C-4) must be assigned to H-3. Observation of the HMBCs (Figure 2), H-3/C-7', H-7'/C-2, C-3, C-8' and C-1', and the H-2'/C-1', C-2' and C-6', indicated that the fragment -CH(OH)-CH₂ was inserted between C-2 and C-1'. This information indicated that 1 had a bishomoflavone skeleton [8]. The NMR spectra of 1 were similar to those of 3 except for an additional hydroxyl group in aromatic ring B, which was further deduced by the extra 16 mass units [8]. The OH group was determined to be at C-3' by the three proton ABX spin system at H-2', H-5' and H-6' of ring B. This was also confirmed by the HMBC correlations of H₂-8'/C-1', C-2' and C-6'. The (R)-configuration at position 11 of 1 was determined by comparison of optical rotation values ([α]D° + 32.6) and NMR spectra data with the known compound 3 ([α]D° + 46) [8]. Based on the above spectral evidence, the structure of 1 is shown in Figure 1, and named maclurin A.

Compound 2 was obtained as a yellow solid with the molecular formula C₁₇H₁₃O₆, deduced from the HR ESIMS (m/z 339.0841 [M + Na]⁺, Calcd for 339.0845). The ¹H-NMR spectral data (Table 1) of 2 indicated the presence of three singlet aromatic protons at δH 6.94, 7.05 and 7.09, together with a pair of AB coupling system protons at δH 6.79 (d, J = 9.0) and 7.21 (d, J = 9.0). The ¹³C-NMR spectrum displayed 14 aromatic signals and three methoxyl groups. This information indicated that 2 was a 2-arylbenzo[fluran derivative [9]. The two broad proton singlets at δH 7.05 and 6.94 were assigned to the two aromatic protons H-3 and H-7. The AB
coupling system at $\delta_{H} 6.79$ (d, $J = 9.0$) and 7.21 (d, $J = 9.0$), similar to the 1H-NMR data of 4 [10], was assigned to the 2,4,6-trimethoxy-3-hydroxy-2-phenyl moiety (ring C). This was confirmed by the HMBC spectrum (Figure 3). Another methoxy at $\delta_{H} 3.77$ must be positioned at C-5 and one aromatic proton singlet at $\delta_{H} 7.09$ assigned as H-4 was determined by the key HMBC correlations of OCH$_2$/C-5, H-4/C-5, C-6 and C-8 and the ROESY correlation between H-4/5-OMe. Thus, the structure of 2 was determined and named maclurin B.

Figure 3: Selected HMBC correlations (→) and selected ROESY correlation (↔) of (2).

Table 1: NMR Spectroscopic Data (400 MHz, DMSO-d$_6$) for 1–2 (δ in ppm, J in Hz).

<table>
<thead>
<tr>
<th>No.</th>
<th>δ_1</th>
<th>δ_2</th>
<th>δ_3</th>
<th>δ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.16, s</td>
<td>120.6</td>
<td>7.05, s</td>
<td>104.5</td>
</tr>
<tr>
<td>2</td>
<td>173.7</td>
<td>131.6</td>
<td>145.8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.31, d (8.4)</td>
<td>111.7</td>
<td>146.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>158.8</td>
<td>103.4</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6.40, s</td>
<td>161.9</td>
<td>120.9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>109.3</td>
<td>117.5</td>
<td>143.5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>127.6</td>
<td>117.4</td>
<td>143.5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>145.2</td>
<td>144.3</td>
<td>149.3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6.52, d (8.8)</td>
<td>115.6</td>
<td>108.2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6.28, d (8.8)</td>
<td>108.4</td>
<td>115.9</td>
<td></td>
</tr>
<tr>
<td>1'</td>
<td>2.47, d (14.4), 3.02, d (14.4)</td>
<td>39.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2'</td>
<td>3.77, s</td>
<td>56.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3'</td>
<td>3.75, s</td>
<td>59.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'</td>
<td>3.79, s</td>
<td>56.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phytochemical study of this plant also resulted in the isolation of six known compounds, ononin (3) [8], petroruran (4) [10], osajin (5) [Sc], pomiferin (6) [Sc], 3,4-dihydroxybenzoic acid (7) [11] and 2,3,4-trihydroxybenzoic acid (8) [12], which were determined by comparison of their NMR and MS spectroscopic data with the reported values in the literature. Among them, compounds 3 and 4 were isolated from the genus Maclura Nutt for the first time.

Experimental

General: NMR experiments were performed using a JEOL ECS 400 spectrometer, with spectroscopic data referenced to the solvent used. HR-mass spectra were acquired using a MDS Sciex API QStar Pulsar mass spectrometer. UV spectra were recorded on a UV 210A spectrophotometer. Optical rotation values were measured on a JASCO P-1010 polarimeter. Octadeyl-functionalized silica gel, silica gel, Diaion® HP-20 absorbent resin, and TLC plates were purchased from Aldrich Chemical Co. HPLC analysis was performed on an Agilent 1260 HPLC system using Agilent ODS columns (Zorbax SB-C18, 4.6 × 250 mm, 3.5μm). Doxorubicin (98%) was purchased from Sigma-Aldrich Chemical Co.

Plant material: Fruit from M. pomifera was collected in Nacogdoches, Texas, USA, and identified by Dr. Shiyou Li. The voucher specimen (TX-Nac-20111020-8001) was deposited at the National Center for Pharmaceutical Crops at Stephen F. Austin State University, Nacogdoches, USA.

Extraction and isolation: Air-dried fruit of M. pomifera (630 g) were powdered and extracted three times with 95% EtOH at room temperature (3 L × 3). After removal of the solvent, the crude extract (93 g) was partitioned between H$_2$O and EtOAc, to yield an EtOAc-soluble residue (36g). The residue showing potent cytotoxicity against A549 cancer cell line (GI$_{50}$ 19.7 µg/mL) was chromatographed on HP-20 resin (MeOH/H$_2$O 0.1%: 7:1 and 1:0, each 6 L) to give three fractions, Fr. A–C. Compounds 7 (55 mg) and 8 (82 mg) were isolated from Fr. A (15g) by chromatography on Si gel CC by CHCl$_3$/MeOH (20:1, 10:1 and 5:1, v/v). Fr. B (7 g) was separated on Si gel with a CHCl$_3$/MeOH gradient system to give five subfractions (Fr. B1–Fr.B5). Compounds 5 (22 mg) and 6 (16 mg) were isolated from Fr.B3 (980 mg) by Si gel CC with a CHCl$_3$/MeOH gradient system (0:1 to 1:2 v/v) to get three subfractions (Fr.B4a–Fr.B4c). Fr.B4b (120 mg) was further purified by HPLC (CH$_3$CN/0.1% HOAc in H$_2$O: 17/83, v/v, 0.6 mL/min) to afford compounds 1 (10 mg, t$_R$ 34.9 min) and 3 (6 mg, t$_R$ 38 min). Fr. C (2.5 g) was first chromatographed on Si gel with n-hexane/EtOAc gradient system (0:1 to 2:1 v/v) to get three subfractions (Fr. C1–Fr.C2), then Fr. C2 was purified by analytical HPLC (CH$_3$CN/0.1% HOAc in H$_2$O: 25/75, v/v, 0.6 mL/min) to give compounds 2 (5 mg, t$_R$ 72.1 min) and 4 (7 mg, t$_R$ 121.2 min).

Maclurin A (1)

Light yellow gum.

$[\alpha]_D^{20^\circ} +32.6$ (c 0.1, MeOH);

UV (MeOH) λ_{max} (log e): 211 (3.8), 286 (2.8), 325 (3.3).

1H and 13C NMR: Table 1.

EIMS: m/z 314.3, HR ESIIMS: m/z 315.0869 [M + H]$^+$ (calcd. for C$_{17}$H$_{15}$O$_{6}$Na, 315.0869).

Maclurin B (2)

Pale brown powder.

UV (MeOH) λ_{max} (log e): 211 (4.3), 284 (3.1), 291 (3.6), 325 (4.4), 340 (4.1).

1H and 13C NMR: Table 1.

EIMS: m/z 316.3, HR ESIIMS: m/z 339.0841 [M + Na]$^+$ (calcd. for C$_{17}$H$_{16}$O$_{6}$Na, 339.0845).

Cytotoxicity assay: Compounds (1–6) were assayed for their cytotoxicity against three human cancer cell lines (A549, Panc-28, and HCT116) by WST-8 method, with doxorubicin as a positive control [13]. The results (Table 2) showed that compounds 2–4 exhibited cytotoxicity against A549 and Panc-28 with GI$_{50}$ values from 18.1 to 32.2, and 20.6 to 43.5 μM, respectively. Compounds 2 and 4 showed cytotoxicity against HCT116 with GI$_{50}$ values of 47.2 and 24.4 μM, respectively. The other compounds showed no activity against the three tested cell lines with GI$_{50}$ values > 50 μM.

Table 2: Cytotoxicity Evaluation of compounds 1–6.

<table>
<thead>
<tr>
<th>Compound</th>
<th>A549</th>
<th>Panc-28</th>
<th>HCT-116</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>50 μM</td>
<td>>50 μM</td>
<td>>50 μM</td>
</tr>
<tr>
<td>2</td>
<td>26.1 ± 5.57 μM</td>
<td>43.5 ± 3.68 μM</td>
<td>47.2 ± 3.15 μM</td>
</tr>
<tr>
<td>3</td>
<td>32.2 ± 5.19 μM</td>
<td>22.7 ± 2.86 μM</td>
<td>>50 μM</td>
</tr>
<tr>
<td>4</td>
<td>18.1 ± 6.35 μM</td>
<td>20.6 ± 3.08 μM</td>
<td>24.4 ± 1.05 μM</td>
</tr>
<tr>
<td>5</td>
<td>>50 μM</td>
<td>>50 μM</td>
<td>>50 μM</td>
</tr>
<tr>
<td>6</td>
<td>>50 μM</td>
<td>>50 μM</td>
<td>>50 μM</td>
</tr>
</tbody>
</table>

Each GI$_{50}$ was determined as the mean ± SD in triplicate determinations for each concentration.

Acknowledgment - This project was funded by Stephen F. Austin State University.

Conflict of Interest: None of the authors has any conflicts of interest related to this study.
References