Oxidation of Gold Clusters by Thiols

Brian M. Barngrover
Stephen F Austin State University, barngrovbm@sfasu.edu

Christine M. Aikens

Follow this and additional works at: https://scholarworks.sfasu.edu/chemistry_facultypubs

Part of the Chemistry Commons
Tell us how this article helped you.

Repository Citation
Barngrover, Brian M. and Aikens, Christine M., "Oxidation of Gold Clusters by Thiols" (2013). Faculty Publications. 51.
https://scholarworks.sfasu.edu/chemistry_facultypubs/51

This Article is brought to you for free and open access by the Chemistry and Biochemistry at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.
Oxidation of Gold Clusters by Thiols

Brian M. Barngrover and Christine M. Aikens*

Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States

ABSTRACT: The formation of gold–thiolate nanoparticles via oxidation of gold clusters by thiols is examined in this work. Using the BP86 density functional with a triple-ζ basis set, the adsorption of methylthiol onto various gold clusters \(\text{Au}_n^{Z} \) \((n = 1–8, 12, 13, 20; Z = 0, -1, +1) \) and \(\text{Au}_{38}^{4+} \) is investigated. The rate-limiting step for the reaction of one thiol with the gold cluster is the dissociation of the thiol proton; the resulting hydrogen atom can move around the gold cluster relatively freely. The addition of a second thiol can lead to \(\text{H}_2 \) formation and the generation of a gold–thiolate staple motif.

INTRODUCTION

Gold–thiolate nanoparticles and self-assembled monolayers (SAMs) are important for a variety of applications.\(^1\)–\(^3\) Recent structural studies using X-ray crystallography, scanning tunneling microscopy (STM), or density functional theory (DFT) on nanoparticles and SAMs have demonstrated that these systems have a core–shell-like arrangement in which gold–thiolate oligomers \(-\text{SR}-(\text{Au–SR})_{n}\) \((\text{where the gold atom is formally considered to be in the +1 oxidation state}) \) can cover a gold core or surface \((\text{which primarily contains Au}(0)) \). For example, oligomeric motifs \((\text{often called “staples”}) \) are seen on a wide variety of nanoparticles such as \(\text{Au}_{15}(\text{SR})_{2}^{−/0} \), \(\text{Au}_{16}(\text{SR})_{2}^{−} \), \(\text{Au}_{18}(\text{SR})_{2}^{−} \), \(\text{Au}_{38}(\text{SR})_{2}^{−} \), and \(\text{Au}_{102}(\text{SR})_{4}^{−} \) although recent work suggests that other binding motifs may be possible for sterically demanding thiolates.\(^1\)\(^2\)\(^\text{13}\)\(^\text{14}\)\(^\text{15}\) These staples are also present on SAMs.\(^1\)\(^2\)\(^\text{13}\)\(^\text{14}\)\(^\text{15}\)

The growth of gold–thiolate nanoparticles is often accomplished by the Brust–Schiøtt synthesis, in which a gold(III) salt reacts with thiol (\(\text{HSR} \)) and \(\text{NaBH}_4 \) and is consequently reduced to form \(\text{Au}_n(\text{SR})_{m} \) nanoparticles.\(^1\)\(^8\) An alternative method of formation is through the use of solvated metal atom dispersion (SMAD), in which atoms from a metal vapor are trapped in frozen solvent such as tetrahydofuran (THF) at \(77 \) K, warmed to yield clusters and colloids, and subsequently reacted with thiol.\(^1\)\(^9\) These two synthetic methods can yield different sizes of gold–thiolate nanoparticles.\(^2\)\(^0\)

Because the properties of a gold nanoparticle depend on its size and morphology, understanding its growth mechanism is of interest because this can potentially lead to control over these aspects. Several experimental\(^2\)\(^1\)–\(^2\)\(^3\) and theoretical\(^2\)\(^4\)\(^\text{25}\) studies have begun to examine the Brust–Schiøtt synthesis and determine whether thiols are able to play a role in reducing the Au(III) salt to a nanoparticle containing \(\text{Au}(0) \) and \(\text{Au}(1) \). However, little is known about the oxidative synthesis in which thiols oxidize bare gold clusters to yield \(\text{Au}_n(\text{SR})_{m} \) nanoparticles. Two experimental studies have shown that \(\text{H}_2 \) is released in this process.\(^2\)\(^6\)\(^\text{27}\)\(^\text{28}\) A very recent theoretical study used ab initio molecular dynamics with DFT to examine the interaction of two thiols with an \(\text{Au}_n \) cluster; they found that \(\text{H}_2 \) is produced in the reaction and a staple is formed on the gold cluster.\(^2\)\(^8\) Methythiolates adsorbed on bare \(\text{Au}_{38} \) clusters have also been observed by Jiang et al. to form staple motifs in dynamic simulations.\(^2\)\(^9\) In this work, we examine reaction pathways for the interaction of small gold clusters \(\text{Au}_n \) \((n = 1–8, 12, 13, 20, 38)) \) with one and two thiols to determine the preferred adsorption sites for thiols, the rate-limiting step of hydrogen atom dissociation and transfer, and the thermodynamics of \(\text{H}_2 \) production and staple formation to provide a greater understanding of the oxidative growth mechanism of gold nanoparticles.

COMPUTATIONAL DETAILS

All calculations are performed with the Amsterdam density functional (ADF)\(^3\)\(^0\) package, using density functional theory with the Becke Perdew (BP86)\(^3\)\(^1\)\(^3\)\(^2\)\(^3\)\(^3\) functional and a frozen-core polarized triple-ζ (TZP) basis set. We include scalar relativistic effects by employing the zero-order regular approximation (ZORA).\(^3\)\(^3\) We incorporate the THF solvent using the conductor-like screening model (COSMO), which represents the solvent by its dielectric constant.\(^3\)\(^4\)–\(^3\)\(^6\)

Initial structures for the small gold clusters \(\text{Au}_n \) \((n = 1–8, 12, 13, 20, 38)) \) are obtained from the literature;\(^3\)\(^7\)–\(^4\)\(^2\) both 2D and 3D structures for \(\text{Au}_{12} \) and \(\text{Au}_{13} \) are considered because these sizes are near the 2D–3D crossover point for gold.\(^4\)\(^1\)\(^4\)\(^2\) Neutral, anionic, and cationic charge states for the gold clusters are examined, as discussed in the following section. Calculations described in this work employ the methyl group on the thiol or thiolate ligand. All intermediates and transition states are fully optimized; Hessian calculations have been performed to verify the existence of one imaginary frequency for the transition states.

Received: April 12, 2013
Revised: May 31, 2013
Published: June 5, 2013

© 2013 American Chemical Society
RESULTS AND DISCUSSION

One Thiol Adsorption. Adsorption energies for one thiol on various gold clusters can be found in Table 1, and adsorption structures are shown in Figure 1. Binding of thiols to all unique gold coordinates were considered; only the lowest energy thiol adsorption sites are presented here. In almost all cases, thiol adsorption is exothermic. The first exception is the Au\(_1\) anion, which is the only gold system examined here on which thiol adsorption is endothermic. Thiol adsorption on the neutral Au atom is exothermic with an adsorption energy (\(E_{\text{ads}}\)) of \(-0.68\) eV, and adsorption on the Au\(_1^+\) cation is the most favored with an adsorption energy of \(-2.52\) eV. Thiol adsorption on all larger clusters is exothermic with the exception of Au\(_2^-\) and Au\(_3^-\) for which the thiol did not bind, which is in agreement with Varganov et al., who observed the same phenomenon with hydrogen on these clusters.\(^{43}\) Because the thiol binds via lone pair donation to the gold cluster, it appears that the Au\(_n^-\) (\(n = 1-3\)) anions are too small to favorably accommodate this binding (possibly due to a high electron density). For Au\(_1\) through Au\(_3\), all of the charge states have the same lowest energy structure for a given cluster size. Au\(_4\) has two different low-energy structures depending on charge: the neutral and anion share the same Y-shaped structure, whereas the cation has a diamond shape. As observed

<table>
<thead>
<tr>
<th>neutral clusters</th>
<th>energy (eV)</th>
<th>anion clusters</th>
<th>energy (eV)</th>
<th>cation clusters</th>
<th>energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au(_1)</td>
<td>(-0.68)</td>
<td>Au(_1)</td>
<td>0.04</td>
<td>Au(_1)</td>
<td>(-2.52)</td>
</tr>
<tr>
<td>Au(_2)</td>
<td>(-1.34)</td>
<td>Au(_2)</td>
<td>NA</td>
<td>Au(_2)</td>
<td>(-1.97)</td>
</tr>
<tr>
<td>Au(_3)</td>
<td>(-1.43)</td>
<td>Au(_3)</td>
<td>NA</td>
<td>Au(_3)</td>
<td>(-1.66)</td>
</tr>
<tr>
<td>Au(_4)</td>
<td>(-1.43)</td>
<td>Au(_4)</td>
<td>(-0.68)</td>
<td>Au(_4)</td>
<td>(-1.50)</td>
</tr>
<tr>
<td>Au(_5)</td>
<td>(-0.96)</td>
<td>Au(_5)</td>
<td>(-0.90)</td>
<td>Au(_5)</td>
<td>(-1.66)</td>
</tr>
<tr>
<td>Au(_6)</td>
<td>(-0.89)</td>
<td>Au(_6)</td>
<td>(-0.67)</td>
<td>Au(_6)</td>
<td>(-1.46)</td>
</tr>
<tr>
<td>Au(_7)</td>
<td>(-0.97)</td>
<td>Au(_7)</td>
<td>(-0.87)</td>
<td>Au(_7)</td>
<td>(-1.27)</td>
</tr>
<tr>
<td>Au(_8)</td>
<td>(-1.03)</td>
<td>Au(_8)</td>
<td>(-0.64)</td>
<td>Au(_8)</td>
<td>(-1.36)</td>
</tr>
<tr>
<td>Au(_{12}) 2D</td>
<td>(-0.90)</td>
<td>Au(_{12}) 2D</td>
<td>(-0.62)</td>
<td>Au(_{12}) 2D</td>
<td>(-1.21)</td>
</tr>
<tr>
<td>Au(_{12}) 3D</td>
<td>(-0.88)</td>
<td>Au(_{12}) 3D</td>
<td>(-0.55)</td>
<td>Au(_{12}) 3D</td>
<td>(-1.17)</td>
</tr>
<tr>
<td>Au(_{13}) 2D</td>
<td>(-0.98)</td>
<td>Au(_{13}) 2D</td>
<td>(-0.61)</td>
<td>Au(_{13}) 2D</td>
<td>(-1.40)</td>
</tr>
<tr>
<td>Au(_{13}) 3D</td>
<td>(-1.02)</td>
<td>Au(_{13}) 3D</td>
<td>(-0.63)</td>
<td>Au(_{13}) 3D</td>
<td>(-1.37)</td>
</tr>
<tr>
<td>Au(_{20})</td>
<td>(-0.77)</td>
<td>Au(_{20})</td>
<td>(-0.73)</td>
<td>Au(_{20})</td>
<td>(-1.16)</td>
</tr>
</tbody>
</table>

Figure 1. Lowest energy adsorption of methylthiol onto Au\(_n^{(0,+,-)}\) (\(n = 1-8, 12, 13, 20\)) and Au\(_{38}^{4+}\). Gold = black, sulfur = yellow, carbon = gray, and hydrogen = white.
Chart 1. Reaction Pathway of Thiol Adsorption on Au_3 and Subsequent Hydrogen Movement on the Gold Clustera

aGold = black, sulfur = yellow, carbon = gray, and hydrogen = white.

Chart 2. Reaction Pathway of Thiol Adsorption on Au_{12} 3D and Subsequent Hydrogen Movement on the Gold Clustera

aGold = black, sulfur = yellow, carbon = gray, and hydrogen = white.
for Au₅, the cation is the charge state for which thiol adsorption is the most favored, followed by the neutral, and last the anionic charge state. Au₅ also has two different low-energy structures: Au₅⁺ and Au₅⁻ share the same W-shaped structure, whereas Au₅⁻ has a branched Y-shaped structure for its low-energy structure. The lowest energy structures for Au₁₋₄ are indicated in Figure 1 with their corresponding charge states. The gold clusters with one thiol adsorbed have the same core structures as the bare systems. Even though various charge states have different lowest energy structures, the trend for favored adsorption continues with \(|E_{\text{ads}}(\text{cation})| > |E_{\text{ads}}(\text{neutral})| > |E_{\text{ads}}(\text{anion})| \).

For Au₁₂₀, both 2D and 3D structures were considered with three different charge states because this cluster size is approximately where the 2D to 3D crossover occurs. At the BP86/TZP level of theory, the 2D structure is lower in energy than the 3D structure. The adsorption energy trend as a function of charge state continues even with the change in dimension. Au₁₃ 2D and 3D structures have also been examined. For this system, we have investigated the cuboctahedral structure, which is not the lowest energy 3D structure but is of interest due to its high symmetry. Previous studies have examined binding of the thiolate ion to the cuboctahedral Au₁₃ cluster. It should be noted that the Au₁₃ 2D structure is lower in energy than this cuboctahedral structure. For Au₁₃₀, the tetrahedral structure is the lowest energy structure. Again, the adsorption energy of the cation is the greatest, followed by the neutral and then the anion. The last cluster we examined was octahedral Au₄₈. The +4 charge state was examined because the neutral cuboctahedral cluster distorts due to a Jahn–Teller distortion. This +4 charge leads to a cluster with an electronic magic number of 34 electrons. The octahedral cluster has two unique gold coordination sites: one is an edge atom joining two hexagonal faces and the other is the face site in the center of each hexagonal face. The edge site is the more favored thiol adsorption site compared with the face site, which is logical because it has a lower coordination number.

Reaction Pathway. Next, we investigated the reaction pathway from the adsorption of one thiol on Auₙ and Au₁₂ 3D to the formation of H[Auₙ(SCH₂)]. To determine which step is the rate-limiting step, the reaction pathways for Au₃ and Au₁₂ are shown in Charts 1 and 2. The first transition state is calculated for the dissociation of the thiol proton onto the gold cluster. For Au₅, this transition state lies 0.83 eV above the adsorbed complex; for Au₁₂ 3D, the barrier height is 0.78 eV. When the thiol proton dissociates it gains partial charge from the gold cluster and behaves more like a hydrogen atom. Once the hydrogen is on the gold surface, it is free to move around the gold surface with relative ease, as shown by the barrier heights for the subsequent steps; for Au₅, the next largest barrier height is 0.03 eV. This ease of movement has been observed by other groups. Au₁₂ has a stable second intermediate, with the stability possibly due to the hydrogen bridging the two gold atoms, making the subsequent barrier height rather high at 0.71 eV; however, this barrier height is still smaller than the previously mentioned one for the thiol proton dissociation.

In Charts 1 and 2, the first transition state lies significantly below the energy of the separated reactants; in consequence, if energy transfer to metal vibrational modes or to solvent is slow enough, then this reaction will proceed easily. Because the gold clusters are not bare under experimental conditions, we have considered the effects of solvent (in this case, THF) adsorption on the reaction energies. THF binds to the Au₃ and Au₁₂ 3D clusters with \(E_{\text{ads}} \) of −0.69 and −0.28, respectively. The reaction for the replacement of THF by a thiol (leading to the first intermediates shown in Charts 1 and 2) yields reaction energies of −0.74 and −0.60, respectively; the energy released in these reactions is not quite enough to overcome the thiol dissociation barrier, so an effective activation energy barrier should be observed under experimental conditions.

Because the proton removal step is the rate-limiting step for Au₃ and Au₁₂ 3D, a further investigation into this barrier height for all of the neutral gold–thiol clusters has been performed. Proton removal barrier heights are presented in Table 2. Thiol proton dissociation on Au₅ through Au₉ is found to have barrier heights of 0.87, 1.26, 0.83, 1.18, 1.10, 0.86, and 1.38 eV, respectively. An overall odd—even effect is observed, which we believe is due to the unpaired electron in the odd size clusters, which more easily allows the cluster to provide an electron to the incoming hydrogen, thus lowering the barrier height. On closer examination, the barrier height on Au₅ is significantly lower than clusters of neighboring sizes; this is because Au₅ undergoes an isomer change (Figure 2). For the remaining larger clusters the pattern appears to hold true. Au₁₂ 3D is also an interesting case to examine closer. The Au₁₂ 3D structure forms a thiolate bridge between two gold atoms when the thiol proton is removed. This is only observed in this structure and Au₇.

Second Thiol Addition. The crux of this investigation is to develop an understanding of the formation of gold thiolate nanoclusters and hydrogen gas. To explore this, a second thiol is required. Structures resulting from the addition of a second

Table 2. Barrier Heights for the Dissociation of the Thiol Proton on Auₙ (n = 1–8, 12, 13, 20) and Auₙ⁺⁺⁺

<table>
<thead>
<tr>
<th>cluster size</th>
<th>energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au₅</td>
<td>0.87</td>
</tr>
<tr>
<td>Au₆</td>
<td>1.26</td>
</tr>
<tr>
<td>Au₇</td>
<td>0.83</td>
</tr>
<tr>
<td>Au₈</td>
<td>1.18</td>
</tr>
<tr>
<td>Au₉</td>
<td>1.10</td>
</tr>
<tr>
<td>Au₁₀</td>
<td>1.61</td>
</tr>
<tr>
<td>Au₁₁</td>
<td>0.86</td>
</tr>
<tr>
<td>Au₁₂</td>
<td>1.38</td>
</tr>
<tr>
<td>Au₁₃ 2D</td>
<td>1.06</td>
</tr>
<tr>
<td>Au₁₄ 3D</td>
<td>0.78</td>
</tr>
<tr>
<td>Au₁₅ 2D</td>
<td>1.28</td>
</tr>
<tr>
<td>Au₁₆</td>
<td>1.56</td>
</tr>
<tr>
<td>Au₁₇</td>
<td>1.55</td>
</tr>
</tbody>
</table>

![Figure 2. Isomer shift of Au₅ after the removal of the thiol proton and the formation of thiolate and hydrogen. Gold = black, sulfur = yellow, carbon = gray, and hydrogen = white.](image-url)
thiol to HAu₁₂(SCH₃) and HAu₁₂(SCH₂⁻) 3D have been optimized. There are three sites for the incoming thiol to bind to on the Au₃ complex: where the thiolate is coordinated, where the hydrogen is coordinated, or on the uncoordinated gold (Figure 3). The favored adsorption site for the incoming thiol is the uncoordinated site (1) with an adsorption energy of −0.84 eV. The next favored adsorption site (2) is where the first hydrogen is coordinated with an adsorption energy of −0.41 eV. The least favored adsorption site (3) is where the first thiolate is coordinated with an adsorption energy of −0.14 eV. This trend makes sense because the incoming thiol would not have to compete with any other molecule or atom to bind to the uncoordinated site. The reaction energy for the production of hydrogen gas and a gold cluster with thiolates on different gold atoms (structure 4) is −0.02 eV from structure 2 or 0.41 eV from structure 1; the reaction energy is endothermic for the latter reaction because the initial structure has a high binding energy for the thiol. The least favored reaction is the production of H₂ from structure 3, where the thiol and thiolate are coordinated to the same gold; this process has a reaction energy of 0.83 eV.

Compared to Au₃, Au₁₂ 3D has many additional sites that the second thiol could adsorb to; in this work, we focus on the low-energy sites that are the other vertices. Unlike the Au₃ case, the
The Journal of Physical Chemistry A

Chart 3. Reaction Pathway of Thiol Adsorption on HAu_{12}SCH_{3} 3D and Subsequent Hydrogen Movement on the Gold Cluster

thiol adsorbing to the vertex that was not coordinated to the thiolate or hydrogen (structure 1 in Figure 4) is not the most favored structure for Au_{12} 3D ($E_{\text{ads}} = -1.02$ eV). Instead, the lowest energy structure is structure 2, in which the incoming thiol adsors to the gold atom where the hydrogen is coordinated ($E_{\text{ads}} = -1.27$ eV). The least favored adsorption site is structure 3, where the thiolate is already adsorbed ($E_{\text{ads}} = -0.81$ eV). For both structures 1 and 2, evolution of hydrogen gas is thermodynamically unfavorable; reaction energies to produce H\textsubscript{2} and structures 4 and 5 are 0.62 and 0.95 eV, respectively. In contrast, evolution of hydrogen gas from structure 3 is favorable with a reaction energy of -0.68 eV. The resulting structure 6 is also an interesting cluster because it is the first time formation of a staple motif is observed in this investigation. Structure 6 is lower in energy than isomers 4 and 5, which underscores the importance of the staple motif in nanoparticle and SAM structure. Thus, although the most favorable adsorption geometries for thiols at low coverage involve low-coordinated gold atoms, these structures are not as likely to lead to the formation of staples and hydrogen gas. We expect that at higher coverages, such as those needed for full passivation of the nanoparticle surface, gold–thiolate staples will form.

A further investigation into the formation of structure 6 from structure 3 is examined (Chart 3). The removal of the thiol proton has a barrier height of 0.38 eV. An intermediate with a three-fold binding site for one of the hydrogens forms; this type of structure has not been seen in any of the previous pathways. The three-fold binding site is particularly stable with an energy of -1.72 eV. The transition state between the three-fold intermediate and the final evolution of hydrogen gas has a barrier height of 0.67 eV. During this potential energy surface investigation another interesting intermediate was found. This structure has two hydrogens that bridge the gold much like a staple motif (Figure 5). It is 0.02 eV more stable than the three-fold binding site with an energy of -1.74 eV relative to starting reactants. Although the barriers to form this intermediate are not known at this point, the staple-like motifs could be an interesting target for future experimental and theoretical investigations.

CONCLUSIONS

We investigated the adsorption of methylthiol onto various sizes of gold clusters ($n = 1–8, 12, 13, 20, 38$) with neutral, anionic, and cationic charge states (for Au\textsubscript{38}, only the 4+ state was considered). We found that all adsorptions are predicted to be exothermic with the exceptions of Au\textsubscript{1}−, which is endothermic, and Au\textsubscript{5}2− and Au\textsubscript{3}3−, to which the thiol did not adsorb. We also determined that the rate-limiting step for the
formation of hydrogen gas and the gold thiolate staple motifs is the removal of the thiol proton. An odd—even effect on the formation of the thiolate and hydrogen is present; we conclude that the odd size clusters have a lower barrier height because they do not have to undergo drastic electronic rearrangement to accommodate the new additions to the cluster, whereas the even clusters would have to rearrange. The movement of the hydrogen atom on two specific gold clusters, \(\text{Au}_{12}^2 \) and \(\text{Au}_{12}^3 \) 3D, was considered. \(\text{H}_2 \) formation of hydrogen gas. The adsorption of a second hydrogen atom on two specific gold clusters, \(\text{Au}_{12}^2 \) and \(\text{Au}_{12}^3 \) 3D, was considered. \(\text{H}_2 \) formation is thermodynamically favored relative to the energy of separated thiol and gold cluster, but these structures are not likely to lead to the formation of staples and hydrogen gas. However, at higher coverages, such as those present under most experimental conditions, gold–thiolate staples can form.

AUTHOR INFORMATION

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This material is based on work supported by the National Science Foundation under grant no. CHE-1213771.

REFERENCES

