Vibrational and Electronic Spectra of 9, 10-Dihydrobenzo (a) Pyren-7 (8H)-One and 7, 8, 9, 10-Tetrahydrobenzo (a) Pyrene: An Experimental and Computational Study [Abstract]

Kefa Karimu Onchoke
Stephen F Austin State University, onchokekk@sfasu.edu

Prabir K. Dutta

Matthew Parks
Stephen F Austin State University

Mireya Martinez
Stephen F Austin State University

Follow this and additional works at: https://scholarworks.sfasu.edu/chemistry_facultypubs

Part of the [Chemistry Commons](https://scholarworks.sfasu.edu/chemistry_facultypubs)

Tell us how this article helped you.

Repository Citation

Onchoke, Kefa Karimu; Dutta, Prabir K.; Parks, Matthew; and Martinez, Mireya, "Vibrational and Electronic Spectra of 9, 10-Dihydrobenzo (a) Pyren-7 (8H)-One and 7, 8, 9, 10-Tetrahydrobenzo (a) Pyrene: An Experimental and Computational Study [Abstract]" (2011). Faculty Publications. 41.
https://scholarworks.sfasu.edu/chemistry_facultypubs/41

This Article is brought to you for free and open access by the Chemistry and Biochemistry at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.
Vibrational and Electronic Spectra of 9, 10-Dihydrobenzo (a) Pyrene-7 (8H)-One and 7, 8, 9, 10-Tetrahydrobenzo (a) Pyrene: An Experimental and Computational Study [Abstract]

The molecular geometries, vibrational and UV-vis spectra of 9,10-dihydrobenzo(a)pyrene-7(8H)-one (9,10-H,BaP) and 7,8,9,10-tetrahydrobenzo(a)pyrene (7,8,9,10-H,BaP) were investigated using density functional theory (DFT-B3LYP), with the triple-ζ 6–311 + G(d,p) and Dunning’s cc-pVTZ basis sets. From the comparison of infrared experimental and calculated infrared, and Raman data comprehensive assignments are made. The calculated infrared frequencies below 1800 cm⁻¹ are in good agreement with experimental data, with an average deviation of <4 cm⁻¹. Using the B3LYP/6–311 + G(d,p)//TD-B3LYP/6–311G(d,p) level of theory, transition energies, and oscillator strengths of the 30 lowest electronic absorption bands are assigned to π–π* transitions, with good qualitative agreement between experimental and simulated absorption data. In addition, the HOMO–LUMO gaps and their chemical hardness were analyzed.