Triterpenoid Saponins From Sesbania vesicaria (Abstract)

Wei Yuan
Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, yuanw@sfasu.edu

Ping Wang
Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, wangp@sfasu.edu

Zhizhen Zhang

Zushang Su
Stephen F. Austin State University, Arthur Temple College of Forestry and Agriculture, suz@sfasu.edu

Shiyou Li
Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, lis@sfasu.edu

Follow this and additional works at: http://scholarworks.sfasu.edu/ncpc_articles
Tell us how this article helped you.

Recommended Citation
http://scholarworks.sfasu.edu/ncpc_articles/40

This Article is brought to you for free and open access by the National Center for Pharmaceutical Crops at SFA ScholarWorks. It has been accepted for inclusion in NCPC Publications and Patents by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.
Triterpenoid Saponins From *Sesbania vesicaria*

Abstract

Nine oleanane saponins including three new and six known were isolated from the seeds of *Sesbania vesicaria*. The new saponins were established as 3-\(O\)-[\(\alpha\)-L-rhamnopyranosyl-(1 \(\rightarrow\) 3)]-\(\beta\)-D-glucuronopyranosyl-3\(\beta\),29-dihydroxy-olean-12-en-28-oic acid, 3-\(O\)-\(\alpha\)-L-rhamnopyranosyl-28-\(O\)-\(\beta\)-D-glucopyranosyl-3\(\beta\)-hydroxy-olean-12-en-23-al-28-oate, and 3-\(O\)-\(\alpha\)-L-rhamnopyranosyl-28-\(O\)-\(\beta\)-D-glucopyranosyl-3\(\beta\),23-dihydroxy-olean-12-en-28-oate. All isolated saponins were assayed for their DNA topoisomerase I inhibition ability and cytotoxicity against A549 human lung adenocarcinoma epithelial cells with no positive activity detected (IC\(_{50}\) > 312 \(\mu\)M and GI\(_{50}\) > 25 \(\mu\)M, respectively).