ABSTRACT

Analysis of thin sections from the Wind Mountain quadrangle, Burro Mountains, NM, near the Tyrone copper mine, reveals a complex geologic history. Rock samples collected in the study area were cut using a rock saw and thin sections were prepared and analyzed to determine mineral content and fabric patterns. The oldest rocks in the study area are strongly metamorphosed and locally mylonitized Proterozoic quartzofeldspathic gneisses and amphibolites of Mazatzal affinity. Mineralogical indications of shearing correlate with shear zones observed during field mapping in the area. Another set of samples are of younger Proterozoic granites and metagranites that intruded the country rock. This suite of granites is probably part of the 1.5 byo Burro Mountain granite. In addition to the ductile rocks, several thin sections were of mineralized fault breccia with abundant hydrothermal calcite and, in some samples, gozzan zone iron. Another group of thin sections were of unmetamorphosed mafic dikes rocks composed mostly of pyroxene (augite) and plagioclase. The youngest rocks studied were thin sections of Tertiary tuffs and flows. This study helps with understanding the magmatic, deformational and hydrothermal alteration history of an economically important area.

STUDY AREA

Column show rock units. Burro Mountains

25 rock samples were collected from the western half of the Wind Mountain quadrangle, in Grant county New Mexico.

TECTONIC OVERVIEW

The Wind Mountain quadrangle is located entirely within the Mazatzal province, one of several Precambrian orogenic belts in the southwest United States. The Mazatzal orogeny resulted in the accretion of 1.67-1.65 Ga crust to the southern part of Laurentia (proto North America). The new crust of the Mazatzal province, along with the other Archean to Proterozoic age provinces spanning the southern United States, was added in long, northeast-trending accretionary belts. These belts were made primarily of juvenile continental rocks from volcanic arcs and get younger toward the southeast.

ANALYSIS AND INTERPRETATION

“Spotted” Schist:
Paleoproterozoic metasedimentary rock. Strongly foliated, this felsic schist consists mostly of quartz and feldspar, with some microcline, which is visible in the bottom right corner of the view.

Metagranite:
Part of a group of mesoproterozoic granites and metagranites with mafic dikes. Shows weak foliation if any, with quartz, hornblende, feldspar with albite twinning, and biotite.

Variably Deformed Metagranite:
This view shows the top edge of the thin section, adjacent to a fault plane and displaying strong foliation. The rock grades downward from the fault plane into undeformed metagranite (below).

Calcite-rich Fault Breccia:
This hydrothermal breccia is cemented with large grains of calcite. Small quartz grains have an interlocking pattern possibly due to metamorphism, hydrothermal alteration, and/or fracturing. Source of calcite may be erosion of Mesozoic and Paleozoic limestones.

Rhylsite to Andesite Porphyry:
Most likely a Tertiary intrusive dike or flow, this sample has a fine matrix of quartz and feldspar, with large grains of hornblende, biotite, and partially zoned plagioclase. Some grains have an iron-oxide coating, which may be indicative of hydrothermal activity.

METHODOLOGY

This project required that microscope “thin sections” be made from the rock samples collected by Dr. Barker in the study area in previous years. This entailed using a rock saw to cut small rectangular pieces of the rocks, called billets, that could then be sent away to be professionally manufactured into a microscope slide. When cutting billets from hand samples collected in the field, the objective is to maximize the usefulness of each thin section by carefully orienting the section surface. Ideally, the thin section should be representative of the hand sample, and display structural features as clearly as possible.

ACKNOWLEDGMENTS

This project was funded by the Sophomore Scholarship awarded to the author by the College of Science and Mathematics of Stephen F. Austin State University. Financial assistance for the preparation of thin sections was provided by the Department of Geology at SFASU. The author gratefully acknowledges these sources of support. The author also acknowledges Dr. Chris Barker for the time he has devoted to the field work that made this project possible, and for his continued academic guidance and constant encouragement. Many thanks are due Casey Warshauer, a graduate student in geology at SFASU who gave his time and expertise to help the author with mineral identification during the thin section analysis process.