Flavonoids, Coumarins and Triterpenes from the Aerial Parts of Cnidoscolus texanus (Abstract)

Wei Yuan
Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, yuanw@sfasu.edu

Shiyou Li
Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, lis@sfasu.edu

Stacy Ownby

Zhizhen Zhang

Wanli Zhang

See next page for additional authors

Follow this and additional works at: https://scholarworks.sfasu.edu/ncpc_articles

Tell us how this article helped you.

Repository Citation

Yuan, Wei; Li, Shiyou; Ownby, Stacy; Zhang, Zhizhen; Zhang, Wanli; and Beasley, R. Scott, "Flavonoids, Coumarins and Triterpenes from the Aerial Parts of Cnidoscolus texanus (Abstract)" (2007). *NCPC Publications and Patents*. 32.
https://scholarworks.sfasu.edu/ncpc_articles/32

This Article is brought to you for free and open access by the National Center for Pharmaceutical Crops at SFA ScholarWorks. It has been accepted for inclusion in NCPC Publications and Patents by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.
Authors
Wei Yuan, Shiyou Li, Stacy Ownby, Zhizhen Zhang, Wanli Zhang, and R. Scott Beasley

This article is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/ncpc_articles/32
Flavonoids, Coumarins and Triterpenes from the Aerial Parts of Cnidoscolus texanus

Abstract

Phytochemical investigation on Cnidoscolus texanus led to the isolation of 26 compounds, which included 15 flavonoids (1-15), three coumarins (16-18), three coumaric acid derivatives (19-21), four triterpenoids (22-25), and one phytosterol (26). Among them, aromadendrin 7-O-(4''-O-P-E-coumaroyl-beta-glucopyranoside) (1), aromadendrin 7-O-(3''6''-di-O-P-E-coumaroyl-beta-glucopyranoside) (2), and naringenin 7-O-(4''-O-P-Z-coumaroyl-beta-glucopyranoside) (3) are new compounds. Their structures were determined by spectroscopic and chemical methods. All flavonoids were found to be inactive against DNA topoisomerase I.