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Calculus II Volumes

In Calculus II, we learned how to calculate the volume of a solid
formed by revolving a function around the x− or y − axis of
a 2 − dimensional graph. Take the function R(x) in Figure
1. Revolving R(x) around the x − axis, the solid formed has
circular cross-sections. The radius of a circular cross-section is
the distance from the x − axis to R(x), so the the area of the
cross-sections is A(x) = πR(x)2.

Figure 1:

The volume of this solid is the sum of infinitesimally small circles
which "fill up" this solid. This is gigen by

lim
∆x→0

n∑
k=1

πR(x)2∆x,

which translates to ∫ b

a
πR(x)2dx.

Main Project

The idea for this research was
to find the volume of a solid
formed, not just by revolving
a function about the x− or
y − axis, but by revolving
about an arbitrary line
y = mx + b. We took two
approaches to this project,
namely a
•numerical technique and,
•develop an integral formula Figure 2: Revolved about slanted line

Numerical Technique

The idea here is to treat the line y = mx+ b "like" the x− axis.
We call the line y = mx + b the u − axis, and have our radius
function in terms of u. Now we can sum the areas of our cross-
sections in terms of u instead of x which we would normally do.

Figure 3:

Now our approximation of
volume can be obtained using
the formula

n∑
k=1

πR(u)2∆u.

Since our "u− axis" is not
the same as the x− axis,
then we need to know what u
is in terms of x. Forming a
right triangle with the u− and
x− axes, from the
Pythagorean Theorem we
know ∆u2 = ∆y2 + ∆x2,

and with some algebra we can write
∆u =

√
1 + m2 ∆x

where m is the slope of the line y = mx + b.
Now we only want to rotate f (x) in the interval [A,B] along the
u− axis, but we must project the interval [A,B] from the
u− axis onto the x− axis which allows us to sum our areas in
the interval [a, b] of the x− axis. We divide [A,B] into n
subintervals, thus we have n areas to sum. The radius, R(u), of
each subinterval is given by the length of the perpendicular line
lk : y −mxk = − 1

m(x− xk) between the u− axis and f (x). So
in terms of x our radius is R(xk). Now we can compute
πR(xk)2∆u as described, and summing up these values we have
our approximate volume

V =
n∑
k=1

πR(xk)2√1 + m2 ∆x

Integration Formula

In Figure 3, if we could find the angle between the x− axis and
u− axis, call it θ, then we could use the axis rotation matrix, cos(θ) sin(θ)

− sin(θ) cos(θ)

x
y

 =
u
v

 ,
to help us find an integral for the volume with respect to the
u−axis. Using trigonometry we find θ = tan−1(∆y

∆x) = tan−1(m).
Plugging θ into the rotation matrix we have cos(tan−1(m)) sin(tan−1(m))

− sin(tan−1(m)) cos(tan−1(m))

 =
 1√

1+m2
m√

1+m2

− m√
1+m2

1√
1+m2

 .
Our integral will now be of the form∫

πR(u)2du.

Using the rotation matrix we find that
•u = x cos θ + f (x) sin θ
•du = cos θ + sin θf ′(x)dx
•R(u) = v = −x sin θ + f (x) cos θ

Figure 4: Rotation of Figure 3

Referring to Figure 4;
integrating with respect
to the u− axis our
bounds of integration will
be in [a′, b′], but
projecting this interval
onto the x− axis our
bounds of integration
with respect to x will be
in [a, b]. Now we can

can compute an exact volume using the integral
π

∫ b

a
(− sin θx + cos θf (x))2(cos θ + sin θf ′(x))dx.

For this formula to work, we need the condition that
f ∈ C1[a, b], in other words, f must have a continuous first
derivative on the interval which we are rotating along.
Testing our results have shown that our Numerical Technique
is accurate to within several decimal places of the Integration
Formula.

Extending the Project

Further research on this topic includes finding the volume of
solids by rotating functions about other functions (not just
straight lines,) such as in Figure 6 which
was generated by revolving
the function f (x) = −x2 + 5
about the function
g(x) = x2 + x + 1. Other
ideas to extend this project
include finding applications
where finding the volume of
irregular shapes may be
useful. Perhaps some fields Figure 5: Candy Wrapper
that could apply these methods may involve medical imaging
analysis, atmospheric sciences, geology, or petrophysics to
name a few.
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