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A LIMITING PROCESS TO INVERT THE GAUSS-RADON

TRANSFORM

JEREMY J. BECNEL*

Abstract. In this work we extend the finite dimensional Radon transform
[23] to the Gaussian measure. We develop an inversion formula for this Gauss-

Radon transform by way of Fourier inversion formula. We then proceed to
extend these results to the infinite dimensional setting.

1. Introduction

The Radon transform was invented by Johann Radon in 1917 [23]. The Radon
transform of a suitable function f : Rn → R is defined as a function Rf on the set
Pn of hyperplanes in Rn as follows

Rf (αv + v⊥) =

∫
αv+v⊥

f(x) dx, (1.1)

where dx is the Lebesgue measure on the hyperplane given by αv + v⊥. The
Radon transform remains a useful and important tool even today because it has
applications to many fields, included tomography and medicine [10].

Some of the primary results related to the Radon transform involve the Support
Theorem and the various inversion formulas. Using the Laplacian operator or the
Fourier transform one can actually recover a function f from the Radon transform
Rf [14]. The is one of the primary reasons the Radon transform has proved so
useful in many applications.

This transform does not generalize directly to infinite dimensions because there
is no useful notion of Lebesgue measure in infinite dimensions. However, there
is a well-developed theory of Gaussian measures in infinite dimensions and so it
is natural to extend the Radon transform to infinite dimensions using Gaussian
measure:

Gf (P ) =

∫
f dµP , (1.2)

where µP is the Gaussian measure on any infinite dimensional hyperplane P in a
Hilbert space H0. This transform was developed in [21] initially. We also present
an account here.
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Versions of this measure have been developed in other infinite dimensional set-
tings, including the white noise setting [4], classical Wiener Space [16], and Ba-
nach spaces [15]. The Support Theorems for the infinite dimensional Gauss-Radon
transform have been developed and presented in [9] and [15]

An inversion formula for the infinite dimensional Gauss-Radon transform is
somewhat harder to come across. The most notable is found in the work by Mihai
and Sengupta [21] where they provide a means of inversion through the use of the
Segal-Bargmann transform.

In this work aim to build a means of inversion for the infinite dimensional Gauss-
Radon transform by way of the finite dimensional inversion formula for the Radon
transform using the Fourier transform and some limiting results. In Section 2 we
present the common inversion formulas for the Radon transform. In Section 3 we
develop the Gauss-Radon transform in finite dimensions and discuss a connection
between this transform and the Radon transform. After developing the necessary
tools from White Noise Distribution Theory in Section 4, we develop the the
measure required for the Gauss-Radon transform in 5 and examine its properties.
Lastly, in Section 6 we develop a means of recovering a function from the infinite
dimensional Gauss-Radon transform. The limiting inversion formula is presented
in Theorem 6.6.

2. Radon Transform and Fourier Inversion

In the following we denote the set of hyperplanes in Rn as Pn. That is,

Pn = {αv + v⊥ ; α ∈ R, v ∈ Rn is a unit vector}.

where in the above v⊥ is the orthogonal complement of the the singleton set {v}
containing the unit vector v. Notice each hyperplane αv + v⊥ is specified by two
parameters α and v. In this way v represents the normal vector to the hyperplane
and |α| represents the distance from the hyperplane to the origin. When convenient
we also represent the hyperplane αv + v⊥ as follows

αv + v⊥ = {x ∈ Rn ; x · v = α}.

Definition 2.1. The Radon transform of a function f : Rn → R is a function Rf

on the set Pn given by

Rf (αv + v⊥) =

∫
αv+v⊥

f(x) dx

where dx is the Lebesgue measure on the hyperplane αv + v⊥.

To ensure that the Rf is defined for every element of Pn, one usually assumes
that f is rapidly decreasing, i.e.

sup
x∈Rn

|x|k|f(x)| < ∞ for all k > 0

or that f is in the Schwartz space S(Rn). However, we follow the approach of
Helgason [14] and simply assume that f is integrable on each hyperplane in Rn.
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2.1. Inversion Formulas. We now discuss the various inversion formulas as-
sociated with the Radon transform. The first inversion formula makes use of the
Fourier transform. As is customary, we denote the Fourier transform of a function

f ∈ L1(Rn) as f̂ . That is,

f̂(y) =

∫
Rn

f(x)e−2πix·y dx, for y ∈ Rn. (2.1)

When f̂ is also in L1(Rn) there is the Fourier Inversion formula [25] given by

f(x) =

∫
Rn

f̂(y)e2πix·y dy, for x ∈ Rn. (2.2)

The formulas above extend to f ∈ L2(Rn), but must be interpreted appropriately
in this context (see [25] for details).

We now develop the inversion formula for the Radon transform using the Fourier
transform. Since the proofs are relatively short, we provide them here. In the
following it is convenient to think of f and Rf as functions of two variables, one
from R and one from the unit circle Sn−1. In fact, for the following we adopt the
notation:

Rf (α, v)
definition

= Rf (αv + v⊥). (2.3)

And for f(x) we represent the vector x as αv where α ∈ R and v ∈ Sn−1.

Proposition 2.2. Let f ∈ L1(Rn) be a continuous function such that is integrable
on each hyperplane in Rn. The n-dimensional Fourier transform of f is equal to
the one-dimensional Fourier transform of Rf (αv + v⊥) (or Rf (α, v)). That is,

R̂f (β, v) = f̂(βv).

Again R̂f (β, v) is the Fourier transform only on β with v fixed. That is,

R̂f (β, v) =
∫
R Rf (αv + v⊥)e−2πiβα dα.

Proof. For any β ∈ R and unit vector v ∈ Sn−1 we have

f̂(βv) =

∫
Rn

f(x)e−2πiβv·x dx

=

∫
R

∫
αv+v⊥

f(u)e−2πiβv·u du dα

and using that u ∈ αv + v⊥ yields v · u = α, the above becomes

=

∫
R

∫
αv+v⊥

f(u)e−2πiβα du dα

=

∫
R

∫
αv+v⊥

f(u) du e−2πiβαdα

=

∫
R
Rf (αv + v⊥)e−2πiβα dα

= R̂f (β, v).

□

Proposition 2.2 leads us directly into the following inversion formula.
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Theorem 2.3. Let f ∈ L1(Rn) ∩ L2(Rn) be a continuous function integrable on
each hyperplane in Rn. The inversion formula for a function f in terms of the
Radon transform is

f(x) =

∫
Sn−1

∫ ∞

0

∫
R
Rf (αv + v⊥)e−2πiβ(α−v·x)βn−1dαdβdσ(v). (2.4)

Proof. We start by writing the Fourier inversion formula (2.2) for f in polar co-
ordinates

f(x) =

∫
Rn

f̂(y)e2πix·y dy

=

∫
Sn−1

∫ ∞

0

f̂(βv)e2πix·βvβn−1 dβ dσ(v)

and using Proposition 2.2 above we arrive at

=

∫
Sn−1

∫ ∞

0

R̂f (β, v)e
2πix·βvβn−1 dβ dσ(v)

=

∫
Sn−1

∫ ∞

0

∫
R
Rf (α, v)e

−2πiβα dα e2πix·βvβn−1 dβ dσ(v)

which yields the desired result. □

3. Gauss-Radon Transform in Finite Dimensions

To construct the Gauss-Radon Transform we must first construct a Gaussian
measure on a hyperplane αv + v⊥. We denote such a measure by µαv+v⊥ .

Definition 3.1. The Gaussian measure µαv+v⊥ on the hyperplane αv + v⊥ is
defined by

dµαv+v⊥(x) =
eα

2/2

(2π)(n−1)/2
e−|x|2/2 dx = e−|x−αv|2/2 dx

(2π)(n−1)/2
(3.1)

where dx is the Lebesgue measure on the hyperplane αv + v⊥.

For the second equality in Definition 3.1 we used the fact that for a vector
x ∈ αv + v⊥, the pair of vectors x − αv and αv are orthogonal. Combining this
with knowledge that v is a unit vector gives us

|x|2 = |x− αv|2 + |αv|2 = |x− αv|2 + α2.

Remark 3.2. The characteristics function of the Gaussian measure on the hyper-
plane αv + v⊥ is∫

αv+v⊥
eix·ydµαv+v⊥(x) = eiαv·y−

1
2 |yv⊥ |2 for any y ∈ Rn

where yv⊥ denote the orthogonal projection of y onto the subspace v⊥.
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3.1. Definition of Gauss-Radon Transform. With the Gaussian measure on
a hyperplane definition securely behind us, we can turn our attention to defining
the Gauss-Radon transform. Just as the Radon transform finds the integral of a
function over a hyperplane using the Lebesgue measure for the hyperplane, the
Gauss-Radon transform outputs the integral of a function over a hyperplane using
the Gaussian measure for the hyperplane.

Definition 3.3. The Gauss-Radon transform of a function f : Rn → R is a
function Gf on the set Pn given by

Gf (αv + v⊥) =

∫
αv+v⊥

f(x) dµαv+v⊥(x)

where µαv+v⊥ is the Gaussian measure on the hyperplane αv + v⊥ [6].

We develop an inversion formula for the Gauss-Radon transform. This is based
off the inversion formula from Theorem 2.3 for the Radon transform.

3.2. Relationship between Radon and Gauss-Radon Transform. The re-
lationship between the Radon transform and the Gauss-Radon transform is really
the key to developing inversion formulas for the Gauss-Radon Transform. In the
results to come we extensively use the following proposition.

Proposition 3.4. Suppose f is continuous and

|f(x)| ≤ Meκ|x|
2

for all x ∈ Rn

where M ≥ 0 and κ < 1
2 . Then

Gf (αv + v⊥) = e
α2

2 Rg(αv + v⊥)

where g(x) = f(x) e−
|x|2
2

(2π)(n−1)/2 .

The conditions in the above theorem for the function f are simply there to
ensure that the Gauss-Radon transform exists for all hyperplanes in Rn. They have
the added bonus of ensuring that g is continuous and in Lp(Rn) for 1 ≤ p ≤ ∞.

Proof. Starting from the left we have

Gf (αv + v⊥) =

∫
αv+v⊥

f dµαv+v⊥

= e
α2

2

∫
αv+v⊥

f(x)
e−

|x|2
2

(2π)(n−1)/2
dx by (3.1)

= e
α2

2

∫
αv+v⊥

g(x) dx

= e
α2

2 Rg(αv + v⊥)

yielding the result. □
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3.3. Inversion Formula for the Gauss-Radon Transform. We now present
an inversion formula for the Gauss-Radon transform. The formula involves the
Fourier transform and is derived from Theorem 2.3 using Proposition 3.4.

Theorem 3.5. Suppose f is continuous and

|f(x)| ≤ Meκ|x|
2

for all x ∈ Rn

where M ≥ 0 and κ < 1
2 . The inversion formula for f in terms of the Gauss-Radon

transform is

f(x) = (2π)
(n−1)

2 e
|x|2
2

∫
Sn−1

∫ ∞

0

∫
R
Gf (αv+v⊥)e−2πiβ(α−v·x)−α2

2 βn−1 dα dβ dσ(v).

for any x ∈ Rn.

Proof. Simply replace f in (2.4) with g(x) = f(x) e−|x|2/2

(2π)(n−1)/2 . Then use Proposi-

tion 3.4 to replace Rg(αv + v⊥) with e−α2/2Gf (αv + v⊥). □

4. White Noise Distribution Theory

Our goal is create the Gauss-Radon transform in the infinite dimensional set-
ting. In order to do so we construct a measure (and corresponding distribution) in
this setting of White Noise Distribution Theory. This sections provides a summary
of the setting. The familiar reader can safely skip this section.

4.1. White Noise Setup. We begin by describing the setting under whichWhite
Noise Analysis takes place. The development here is standard and can be found
in [20, 22].

We work with a real separable Hilbert space H0, and a positive Hilbert-Schmidt
operator A on H0 such that there is orthonormal basis {en}∞n=1 of eigenvectors of
A and eigenvalues {λn}∞n=1 satisfying

(1) Aen = λnen
(2) 1 < λ1 < λ2 < . . .
(3)

∑∞
n=1 λ

−2
n < ∞

The typical example is

H0 = L2(R)

A = − d2

dx2
+

x2

4
+

1

2
with eigenvalues λn = (n+ 1).

Using the operator A we have the norms

|x|p = |Apx|0 =

√√√√ ∞∑
n=1

λ2p
n ⟨x, en⟩2

and corresponding spaces

Hp = {x ∈ H0 : |x|p < ∞}. (4.1)
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Each Hp is a Hilbert space with inner-product ⟨·, ·⟩p, which works out to ⟨f, g⟩p =
⟨Apf,Apg⟩. The increasing nature of the norms lead to the chain

H def
=

∞∩
p=0

Hp ⊂ · · ·H2 ⊂ H1 ⊂ H0, (4.2)

with each inclusion Hp+1 → Hp being Hilbert-Schmidt.
Equip H with the topology generated by the norms | · |p (i.e. the smallest

topology making all inclusions H → Hp continuous). Then H is, more or less by
definition, a nuclear space. The vectors en all lie in H and the set of all rational-
linear combinations of these vectors produces a countable dense subspace of H.

Consider a linear functional on H which is continuous. Then it must be contin-
uous with respect to some norm | · |p. Thus the topological dual H′ is the union
of the duals H ′

p. In fact, we have:

H′ =
∞∪
p=0

H ′
p ⊃ · · ·H ′

2 ⊃ H ′
1 ⊃ H ′

0 ≃ H0, (4.3)

where in the last step we used the usual Hilbert space isomorphism between H0

and its dual H ′
0. The norms and inner products on H ′

p are denoted by | · |−p and
⟨·, ·⟩−p, respectively, and work out to be

⟨x, y⟩−p = ⟨A−px,A−px⟩−p and |x|−p = |A−px|0 =

√√√√ ∞∑
n=1

λ−2p
n ⟨x, en⟩2.

(4.4)
The original eigenvectors {en}∞n=1 remain orthogonal in each H−p and scalar mul-
tiples of these form an orthonormal basis.

We now place the strong topology on H′, which turns out to be equivalent to
the inductive limit topology (see Theorem 4.16 in [3]). For more on the structure
of spaces such as H and H′ see [2] and [3].

4.2. Gaussian measure in infinite dimensions. The Gaussian measure on
H′ is obtainable by applying the Kolomorgorov theorem on infinite products of
probability measures [8]. However, its existence is also easily attained by applying
the Minlos Theorem:

Theorem 4.1 (Minlos theorem). A complex value function ϕ on a nuclear space
H is the characteristic function of a unique probability measure ν on H′ , i.e.,

ϕ(v) =

∫
H′

ei⟨x,y⟩ dν(x), y ∈ H

if and only if ϕ(0) = 1, ϕ is continuous, and ϕ is positive definite.

For a proof of the Minlos theorem refer to [12]. Applying the Minlos theorem to

the characteristic function ϕ(y) = e−
1
2 |y|

2
0 gives us the standard Gaussian measure

µ on H′. Using this characteristic function, each x ∈ H0 can be thought of as a
Gaussian random variable x̂ = ⟨x, ·⟩ with mean 0 and variance |x|20. Hence for the
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measure µ observe that for any p ≥ 1, we have∫
H′

∞∑
n=1

λ−2p
n ⟨x, en⟩2 dµ(x) =

∑
j∈W

λ−2p
j < ∞

and therefore H−p is of full measure.
To summarize, we can state the starting point of much of infinite-dimensional

distribution theory (white noise analysis): Given a real, separable Hilbert spaceH0

and a positive Hilbert-Schmidt operator A on H0, we have constructed a nuclear
space H and a unique probability measure µ on the Borel σ–algebra of the dual
H′ such that there is a linear map

H0 → L2(H′, µ) : x 7→ x̂,

satisfying ∫
H′

eitx̂ dµ = e−t2|x|20/2,

for every real t and x ∈ H0. This Gaussian measure µ is often called the white noise
measure and forms the background measure for white noise distribution theory.

4.3. Test Functions and Distributions. We can now develop the ideas of the
preceding section further to construct a space of test functions over the dual space
H′, where H is the nuclear space related to a real separable Hilbert space H0 as
in the discussion in Section 4.1. We use the notation, and in particular the spaces
Hp, from Section 4.1.

The symmetric Fock space Fs(V ) over a Hilbert space V is the subspace of
symmetric tensors in the completion of the tensor algebra T (V ) under the inner–
product given by

⟨a, b⟩T (V ) =

∞∑
n=0

n!⟨an, bn⟩V ⊗n , (4.5)

where a = {an}n≥0, b = {bn}n≥0 are elements of T (V ) with an, bn in the tensor
power V ⊗n. Then we have

Fs(H)
def
=
∩
p≥0

Fs(Hp) ⊂ · · · ⊂ Fs(H2) ⊂ Fs(H1) ⊂ Fs(H0). (4.6)

Thus, the pair H ⊂ H0 give rise to a corresponding pair by taking symmetric Fock
spaces:

Fs(H) ⊂ Fs(H0). (4.7)

A more detailed construction and development of these notions can be found in
the books by Obata [22] and Kuo [20].

4.4. Wiener–Itô Isomorphism. There is a standard unitary isomorphism, the
Wiener-Itô isomorphism or wave-particle duality map, which identifies the com-
plexified Fock space Fs(H0)c with L2(H′, µ). This is uniquely specified by

I : Fs(H0)c → L2(H′, µ) : Exp(x) 7→ ex̂−
1
2 |x|

2
0 (4.8)
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where x ∈ H and

Exp(x) =

∞∑
n=0

1

n!
x⊗n.

Indeed, it is readily checked that I preserves inner–products (the inner–product
is as described in (4.5)). The ideas in this section were first developed in [27, 17],
however, a most recent account can be found in [22], [20], or [19].

Using I, for each Fs(Hp) with p ≥ 0, we have the corresponding space [H]p ⊂
L2(H′, µ) with the norm ∥ · ∥p induced by the norm on the space Fs(Hp)c. The
chain of spaces (4.6) can be transferred into a chain of function spaces:

[H] =
∩
p≥0

[H]p ⊂ · · · ⊂ [H]2 ⊂ [H]1 ⊂ [H]0 = L2(H′, µ). (4.9)

Observe that [H] is a nuclear space with topology induced by the norms {∥·∥p ; p =
0, 1, 2, . . . }. Thus, starting with the pair H ⊂ H0 one obtains a corresponding pair
[H] ⊂ L2(H′, µ).

As before, the identification of H ′
0 with H0 leads to a complete chain

H =
∩
p≥0

Hp ⊂ · · · ⊂ H1 ⊂ H0 ≃ H−0 ⊂ H−1 ⊂ · · · ⊂
∪
p≥0

H−p = H′. (4.10)

In the same way we have a chain for the ‘second quantized’ spaces Fs(Hq)c ≃ [H]q.
The unitary isomorphism I extends to unitary isomorphisms

I : Fs(H−p)c → [H]−p
def
= [H]′p ⊂ [H]′, (4.11)

for all p ≥ 0. In more detail, for a ∈ Fs(H−p)c the distribution I(a) is specified by

⟨I(a), ϕ⟩ = ⟨a, I−1(ϕ)⟩, (4.12)

for all ϕ ∈ [H]. On the right side here we have the pairing of Fs(H−p)c and
Fs(Hp)c induced by the duality pairing of H−p and Hp; in particular, the pairings
above are complex bilinear (not sesquilinear).

4.5. Properties of test functions. The following theorem summarizes the prop-
erties of [H] which are commonly used. The results here are standard (see, for
instance, the monograph [20] by Kuo), and we compile them here for ease of ref-
erence.

Theorem 4.2. Every function in [H] is µ-almost-everywhere equal to a unique
continuous function on H′. Moreover, working with these continuous versions,

(1) [H] is an algebra under pointwise operations;
(2) pointwise addition and multiplication are continuous as operations [H] ×

[H] → [H];
(3) for any x ∈ H′, the evaluation map

δx : [H] → R : F 7→ F (x)

is continuous;

(4) the exponentials eix̂−
1
2 |x|

2
0 , with x running over H, span a dense subspace

of [H].
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(5) For ϕ ∈ [H], p ≥ 0, and x, y ∈ Hp we have

|ϕ(y)− ϕ(x)| ≤ Mp,ϕKp,x,y|y − x|−p

where Kp,x,y = (1 + |x|−p + |y − x|−p) exp
[
1
2 (|x|−p + |y − x|−p)

2
]
and

Mp,ϕ > 0.
(6) Every test function ϕ ∈ [H] has a unique extension ϕ(w), w ∈ H′ such that

ϕ is analytic (single-valued, locally bounded, and Fréchet differentiable) on
H−p,c for any p ≥ 0 and

|ϕ(w)| ≤ Cp,q exp

[
1

2
|w|−p

]
, w ∈ H−p,c

A complete characterization of the space [H] was obtained by Y. J. Lee (see the
account in Kuo [20, page 89]).

4.6. The Segal–Bargmann Transform. An important tool for studying test
functions and distributions in the white noise setting is the Segal–Bargmann trans-
form. The original notion was first introduced during the 1960s in the works [1, 26].
A more recent account, inline with what is presented here, can be found in [13].

The Segal–Bargmann transform takes a function F ∈ L2(H′, µ) to the function
SF on the complexified space Hc given by

SF (z) =

∫
H′

ez̃−⟨z,z⟩2/2F dµ, z ∈ Hc (4.13)

with notation as follows: if z = a+ ib, with a, b ∈ H then

z̃(x)
def
= ⟨z, x⟩=⟨a, x⟩+ i⟨b, x⟩, for x ∈ H′ (4.14)

and again, the pairing ⟨z, w⟩ for z, w ∈ Hc is complex bilinear (not sesquilinear).
Let µc be the Gaussian measure H′

c specified by the requirement that∫
H′

c

eax+by dµc(x+ iy) = e(a
2+b2)/4 (4.15)

for every a, b ∈ H. For convenience, let us introduce the renormalized exponential

function cw = ew̃−⟨w,w⟩2/2 ∈ L2(H′, µ) for all w ∈ Hc. It is readily checked that
for any w ∈ Hc

[Scw](z) = e⟨w,z⟩, for all z ∈ Hc. (4.16)

Thus we may take Scw as a function on H′
c given by Scw = ew̃ where now w̃ is a

function on H′
c in the natural way. Then Scw ∈ L2(H′

c, µc) and one has

⟨Scw, Scu⟩L2(µc)
= ⟨cw, cu⟩L2(µ) = e⟨w,u⟩.

This shows that S provides an isometry from the linear span of the renormalized
exponentials cw in L2(H′, µ) onto the linear span of the complex exponentials ew̃

in L2(H′
c, µc). Passing to the closure one obtains the Segal–Bargmann unitary

isomorphism

S : L2(H′, µ) → Hol2(H′
c, µc)

where Hol2(H′
c, µc) is the closed linear span of the complex exponential functions

ew̃ in L2(H′
c, µc).
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An explicit expression for SF (z) is suggested by (4.13). For any ϕ ∈ [H] and
z ∈ H′

c, we have

(Sϕ)(z) = ⟨I(Exp(z)) , ϕ⟩ (4.17)

where the right side is the evaluation of the distribution I(Exp(z)) on the test
function ϕ. Indeed it may be readily checked that if Sϕ(z) is defined in this way
then [Scw](z) = e⟨w,z⟩.

In view of (4.17), it is natural to extend the Segal-Bargmann transform to
distributions: for Φ ∈ [H]′, define SΦ to be the function on Hc given by

SΦ(z)
def
= ⟨Φ, I(Exp(z))⟩ , z ∈ Hc (4.18)

One of the many applications of the the S–transform includes its usefulness in
characterizing generalized functions in [H]′.

Theorem 4.3 (Potthoff–Streit). Suppose a function F on Hc satisfies:

(1) For any z, w ∈ Hc, the function F (αz+w) is an entire function of α ∈ C.

(2) There exists nonnegative constants A, p, and C such that

|F (z)| ≤ CeA|z|2p for all z ∈ Hc.

Then there is a unique generalized function Φ ∈ [H]′ such that F = SΦ. Con-
versely, given such a Φ ∈ [H]′, then SΦ satisfies (1) and (2) above.

For a proof see Theorem 8.2 in Kuo’s book [20] on page 79.
The S-transform can also aid us in determining convergence in [H]′.

Theorem 4.4. Let Φn ∈ [H]′ and Fn = SΦn. Then Φn converges strongly in [H]′

if and only if the following conditions are satisfied:

(1) limn→∞ Fn(z) exists for all z ∈ Hc.
(2) There exists nonnegative constants A, p, and C such that

|Fn(z)| ≤ CeA|z|2p , for all n ∈ N, z ∈ Hc.

For a proof see Kuo’s book [20] (Page 86, Theorem 8.6).

5. Gaussian Measure on an Affine Subspace

We now turn our attention to developing the Gauss-Radon transform in this
setting. In order to accomplish this, we make use of a measure (and corresponding
distribution) on affine subspaces of H0. This measure and corresponding distri-
bution are explored in detail in [4] and many of these results (and others) can be
found there.

Just as we used the Minlos theorem to form the Gaussian measure µ on H′

(which we think of as the Gaussian measure on H0), we can again use the Minlos
theorem to form the Gaussian measure for the affine subspace a+ V .
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5.1. Gaussian Measure on a + V . For a vector a ∈ H0 and a subspace V of
H0 we can use the Minlos theorem, mimicking the characteristic function in the
finite dimensional case (Remark 3.2) to find that there is a measure µa+V on H′

with ∫
H′

ei⟨x,y⟩ dµa+V (x) = ei⟨a,y⟩−
1
2 ⟨yV ,yV ⟩ (5.1)

for any y ∈ H. The measure µa+V is the Gaussian measure for the affine subspace
a + V . This measure was originally constructed in [4]. It is a special type of
measure known as a Hida measure [18, 20].

Definition 5.1. A measure ν on H′ is called a Hida measure if ϕ ∈ L1(ν) for all
ϕ ∈ [H] and the linear functional

ϕ 7→
∫
H′

ϕ(x) dν(x)

is continuous on [H].

We say that a generalized function Φ ∈ [H]′ is induced by a Hida measure ν if
for any ϕ ∈ [H] we have

⟨⟨Φ, ϕ⟩⟩ =
∫
H′

ϕ(x) dν(x).

The following theorem characterizes those generalized functions which are induced
by a Hida measure.

Theorem 5.2. Let Φ ∈ [H]′. Then the following are equivalent:

(1) For any nonnegative ϕ ∈ [H], ⟨⟨Φ, ϕ⟩⟩ ≥ 0.
(2) The function T (Φ)(x) = ⟨⟨Φ, ei⟨·,x⟩⟩⟩ is positive definite on H.
(3) Φ is induced by a Hida measure.

A proof of this theorem can be found in [20] (page 320, Theorem 15.3).

Corollary 5.3. Let ν be a finite measure on H′ such that for any x ∈ H

⟨⟨Φ, ei⟨·,x⟩⟩⟩ =
∫
H′

ei⟨y,x⟩ dν(y)

for some Φ ∈ [H]′. Then Φ is induced by ν.

Proof. Since ⟨⟨Φ, ei⟨·,x⟩⟩⟩ =
∫
H′ e

i⟨y,x⟩ dν(y) it is clear that ⟨⟨Φ, ei⟨·,x⟩⟩⟩ is positive
definite. So we can apply Theorem 5.2 to get a finite measure m which is induced
by Φ. Hence for all ϕ ∈ [H],

⟨⟨Φ, ϕ⟩⟩ =
∫
H′

ϕdm.

Letting ϕ = ei⟨·,x⟩ in the above equation, we see that the characteristic functions
for m and ν are identical. Therefore m = ν and we have that Φ is induced by
ν. □



GAUSS-RADON INVERSION METHOD 13

5.2. Definition of the distribution δ̃a+V . We now prove that µa+V is a Hida

measure and develop the corresponding distribution δ̃a+V which we think of as
the delta function for the affine subspace a+V [4]. Observe the effect of µa+V on

the renormalized exponential e⟨·,z⟩−
1
2 ⟨z,z⟩,∫

H′
e⟨x,z⟩−

1
2 ⟨z,z⟩ dµa+V (x) = e−

1
2 ⟨z,z⟩

∫
H′

e⟨x,z⟩ dµa+V (x)

= e−
1
2 ⟨z,z⟩e⟨a,z⟩+

1
2 ⟨zV ,zV ⟩

= e⟨a,z⟩−
1
2 ⟨zV ⊥ ,z

V ⊥ ⟩.

Although δ̃a+V was originally developed for a ∈ H0 we could also take a ∈ H ′
p.

Let the function F (z) denote the result from the calculations above. That is,

F (z) = e⟨a,z⟩−
1
2 ⟨zV ⊥ ,z

V ⊥ ⟩ (5.2)

We show that F (z) satisfies properties (1) and (2) of Theorem 4.3.
For property (1) consider F (αz + w) where z, w ∈ Hc and α ∈ C. Then notice

that

F (αz + w) = e⟨a,αz+w⟩−1
2 ⟨αzV ⊥+w

V ⊥ ,αz
V ⊥+w

V ⊥ ⟩

= exp[α⟨a, z⟩+ ⟨a,w⟩ − 1
2 (α

2⟨zV ⊥ , zV ⊥⟩+ 2α⟨zV ⊥ , wV ⊥⟩+ ⟨wV ⊥ , wV ⊥⟩)]

= e−
α2

2 ⟨z
V ⊥ ,z

V ⊥ ⟩eα(⟨a,z⟩−⟨z
V ⊥ ,w

V ⊥ ⟩)e⟨a,w⟩− 1
2 ⟨wV ⊥ ,w

V ⊥ ⟩

which is an entire function of α ∈ C.
Now for property (2) of Theorem 4.3 we write z as z = x + iy with x, y ∈ H

and observe that

|F (z)| = |e⟨a,z⟩− 1
2 ⟨zV ⊥ ,z

V ⊥ ⟩| (5.3)

≤ e⟨a,x⟩e
1
2 |zV ⊥ |20

≤ e|a|−p|x|pe
1
2 |z|

2
0

≤ e
1
2 |a|

2
−p+

1
2 |z|

2
pe

1
2 |z|

2
p

where in the last inequality we used that |z|0 ≤ |z|p. Therefore property (2) of
Theorem 4.3 is satisfied.

Therefore by Theorem 4.3 there exist some Φ ∈ [H]′ such that S(Φ)(z) = F (z).

We simply denote this Φ by δ̃a+V . Then by Corollary 5.3 we have that for a ∈ H0,
Φ is induced by µa+V . This leads us to the following definition: [4]

Definition 5.4. Since ⟨⟨eiẑ, δ̃a+V ⟩⟩ = ei⟨a,z⟩−
1
2 ⟨zV ,zV ⟩ is positive definite in z ∈ H

for a ∈ H′, δ̃a+V defines a Hida measure µa+V by∫
H′

ϕ(x) dµa+V (x) = ⟨⟨ϕ, δ̃a+V ⟩⟩ for ϕ ∈ [H].

5.3. Segal-Bargmann Transform of δ̃a+V . By the definition of δ̃a+V we have

the S-transform of δ̃a+V given by

S(δ̃a+V )(z) = e⟨a,z⟩−
1
2 ⟨zV ⊥ ,z

V ⊥ ⟩ for z ∈ Hc, a ∈ H′. (5.4)
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Now we prove a convenient and perhaps expected property of convergence amongst
these delta functions on an affine subspace. This next result first appeared in [5].

Proposition 5.5. Let {xn} be a sequence in H′ converging to x and suppose
{Sn} is a sequence of subspaces of H0 converging to a subspace S, in the sense
that for any v ∈ H0, we have the projections vSn converges to vS in H0. Then the

generalized functions δ̃xn+Sn converge strongly to δ̃x+S in [H]′.

Proof. First we note that if xn converges to x in H′, then xn converges to x in
some H ′

p (see page 50 in [11] and Fact 18 in [2] ). We now apply Theorem 4.4. To
see that the conditions of Theorem 4.4 are satisfied notice that for z ∈ H′

c we have

lim
n→∞

S(δ̃xn+Sn)(z) = lim
n→∞

⟨⟨δ̃xn+Sn , e
⟨·,z⟩− 1

2 ⟨z,z⟩⟩⟩

= lim
n→∞

e
⟨xn,z⟩− 1

2 ⟨zS⊥
n
,z

S⊥
n
⟩
by (5.4)

= e⟨x,z⟩−
1
2 ⟨zS⊥ ,z

S⊥ ⟩

= S(δ̃x+S)(z).

For the second condition of Theorem 4.4 by calculation similar to that in (5.3)

S(δ̃xn+Sn)(z) ≤ e
1
2 |xn|2−pe|z|

2
p .

Since xn converges to x in H ′
p, e

1
2 |xn|2−p is bounded. Thus the second condition of

Theorem 4.4 is satisfied. □

5.4. Properties of the measure. We now prove some convenient and useful
properties of the measure µa+V . In the following, we make use of the Hilbert
space H0 and vectors e1, e2, . . . as described in Section 4.1. The first result has to
do with finite dimensional affine subspaces.

Theorem 5.6. Let a ∈ span{e1, . . . , en} ⊂ H0 and S be a subspace of H0 with
S ⊂ span{e1, . . . , en}. Then if ϕ ∈ L1(µa+S), we have∫

H′
ϕ(x) dµa+S(x) =

∫
span{e1,...,en}

ϕ(⟨x, e1⟩e1 + · · ·+ ⟨x, en⟩en) dµa+S(x)

Proof. Let PS be the projection onto the subspace S. Observe that for any k > n
we have that∫

H′
eitêk dµa+S = ei⟨a,tek⟩−

1
2 ⟨tPSek,tPSek⟩ = e0 =

∫
R
eits dδ0(s)

where δ0 is the delta measure with δ0(0) = 1. Since the characteristic function of
a random variable uniquely specifies the distribution, it follows that the random
variable êk has a distribution δ0, i.e. êk has the constant value 0 almost everywhere.
Thus the measure of the set ê−1

k (0) = {x ∈ H′ ; ⟨x, ek⟩ = 0} has full measure with
respect to µa+S . Therefore the set {êk ̸= 0} = {x ∈ H′ ; ⟨x, ek⟩ ̸= 0} has µa+S

measure 0. Hence the set
∞∪

k=n+1

{êk ̸= 0}
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has µa+S measure 0. Likewise the complement( ∞∪
k=n+1

{êk ̸= 0}

)c

=
∞∩

k=n+1

{êk ̸= 0}c =
∞∩

k=n+1

{êk = 0} = span{e1, . . . , en}

has µa+S–measure 1. Therefore for any ϕ ∈ L1(µa+S) we have∫
H′

ϕ(x) dµa+S(x) =

∫
span{e1,...,en}

ϕ(x) dµa+S(x)

=

∫
span{e1,...,en}

ϕ(⟨x, e1⟩e1 + · · ·+ ⟨x, en⟩en) dµa+S(x)

since x = ⟨x, e1⟩e1 + · · ·+ ⟨x, en⟩en when x ∈ span{e1, . . . en}. □

The next result relates translation of the subspace (and corresponding measure)
to translation of the function.

Theorem 5.7. Let V be a closed subspace of H0 and a ∈ V ⊥, then for any
measurable ϕ we have∫

H′
ϕ(x) dµa+V (x) =

∫
H′

ϕ(x+ a) dµV (x) (5.5)

where the equality here holds in the sense that if either side is defined so is the
other and the integrals are then equal.

Proof. First we take the special case where ϕ(x) = ei⟨x,ξ⟩ for some ξ ∈ H. Then
we have for the left hand side∫

H′
ϕ(x) dµa+V (x) =

∫
H′

ei⟨x,ξ⟩ dµa+V (x) = ei⟨a,ξ⟩−
1
2 ⟨ξV ,ξV ⟩

and for the right hand side∫
H′

ϕ(x+ a) dµV (x) =

∫
H′

ei⟨x+a,ξ⟩ dµV (x)

= ei⟨a,ξ⟩
∫
H′

ei⟨x,ξ⟩ dµV (x) = ei⟨a,ξ⟩−
1
2 ⟨ξV ,ξV ⟩

Thus we have that (5.5) agrees on the linear span of {ei⟨·,ξ⟩ ; ξ ∈ H}.
Consider a C∞ function f on RN having compact support. Then f is the

Fourier transform of a rapidly decreasing smooth function and so, in particular, it
is the Fourier transform of a complex Borel measure νf on RN :

f(t) =

∫
RN

eit·w dνf (w)

Then for any ξ1, ..., ξN ∈ H, the function f(ξ̂1, ..., ξ̂N ) on H′ can be expressed as

f(ξ̂1, ..., ξ̂N )(x) =

∫
RN

eit1⟨x,ξ1⟩+···+itN ⟨x,ξN ⟩ dνf (t1, ..., tN )

=

∫
RN

ei⟨x,t1ξ1+···+tNξN ⟩ dνf (t1, ..., tN ).

(5.6)
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The function

H′ × RN : (x, (t1, ..., tN )) 7→
N∑
j=1

tj⟨x, ξj⟩

is measurable with respect to the product of the Borel σ-algebras on H′ and RN .
So we can apply Fubini’s theorem to conclude that the identity (5.5) holds when

ϕ is of the form f(ξ̂1, ..., ξ̂N ).
Now the indicator function 1C of a compact cube C in RN is the pointwise

limit of a uniformly bounded sequence of C∞ functions of compact support on

RN , and so the result holds also for f of the form 1C(ξ̂1, ..., ξ̂N ), i.e. the indicator

function of (ξ̂1, ..., ξ̂N )−1(C). Then, by the Dynkin π-λ theorem it holds for the
indicator functions of all sets in the σ-algebra generated by the functions x̂ with
x running over H′, i.e. all Borel sets. Then, taking linear combinations and
applying monotone convergence, the result holds for all non-negative measurable
ϕ on H′. □

In Section 4.2 we saw that with respect to the standard Gaussian measure µ
the space H ′

1 is of full measure. This also holds for the measures µa+V , as we see
in Proposition 5.8.

Proposition 5.8. Let V be a closed subspaces of H0 and a ∈ V ⊥. With respect
to the measure µa+V , H

′
1 is of full measure.

Proof. The characteristic function of µa+V (see (5.1)) implies that the random

variable ξ̂ = ⟨ξ, ·⟩ has Gaussian distribution with mean ⟨a, ξ⟩ and variance |ξV |20.
Therefore

∥ξ̂∥2L2(µa+V ) = |⟨a, ξ⟩|2 + |ξV ⊥ |20 ≤ (|a|20 + 1)|ξ|20. (5.7)

Hence the map ξ 7→ ξ̂ is continuous as a map H → L2(H′, µa+V ) and extends to
a continuous linear map

H0 → L2(µa+V )

y 7→ ŷ

where ŷ satisfies (5.1) and (5.7).
Thus ∫

H′

∞∑
k=1

λ−2
k ⟨x, ek⟩2 dµa+V (x) ≤ (|a|20 + 1)

∞∑
k=1

λ−2
k < ∞.

Therefore H ′
1 is of full measure with respect to µa+V . □

Next we have a lemma that, while specific to a particular subspace, will become
useful as we delve into our main results.

Lemma 5.9. Let Vn = span{e1, . . . , en} as a closed subspace of H0. Then∫
H′

e
1
2 |x|

2
−1 dµV ⊥

n
(x) ≤

∞∏
k=1

√
λ2
k

λ2
k − 1

< ∞.
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Proof. In the following we use the independence of the {êk} with respect to the
measure µV ⊥

n
. Observe∫

H′
e

1
2 |x|

2
−1 dµV ⊥

n
(x) =

∫
H′

exp

(
1

2

∞∑
k=1

λ−2
k ⟨x, ek⟩2

)
dµV ⊥

n
(x)

=
∞∏

k=n+1

∫
R
e

1
2λ

−2
k x2

e−
1
2x

2 dx√
2π

≤
∞∏
k=1

1√
1− λ−2

k

=
∞∏
k=1

√
λ2
k

λ2
k − 1

.

To see that the product above is finite notice that
∞∑
k=1

ln

(
λ2
k

λ2
k − 1

)
=

∞∑
k=1

ln(λ2
k)− ln(λ2

k − 1).

Now for 0 < x < y we have that ln(y) − ln(x) ≤ 1
x (y − x) by the mean value

theorem. Hence in the above we have
∞∑
k=1

ln(λ2
k)− ln(λ2

k − 1) ≤
∞∑
k=1

1

λ2
k − 1

< ∞.

□
Our last result for this section demonstrates a particular type of convergence of

certain measures on affine subspaces. While similar to Proposition 5.5, this result
applies to a broader class of functions. A slightly different version of this next
result for bounded functions on H ′

1 appeared in [7].

Proposition 5.10. Let ϕ be a Borel function on H′ satisfying |ϕ(x)| ≤ Keα|x|−1

for some K,α > 0. If ϕ is sequentially continuous at a ∈ H ′
1 ⊂ H′, then

lim
n→∞

∫
ϕdµan+V ⊥

n
= ϕ(a),

where Vn = span{e1, . . . , en} and an = ⟨a, e1⟩e1 + · · ·+ ⟨a, en⟩en.

Proof. Let ε > 0. We first note that ϕ being sequentially continuous at a implies
that that ϕ is continuous at a in H ′

1. So there exists a δ > 0 such that |y−a|−1 ≤ δ
implies that |ϕ(y)−ϕ(a)| ≤ ε. Note that applying (4.4) and using the orthongality
of the vectors {ek}∞k=1 we have

|a− an|2−1 =

∞∑
k=1

λ−2
k ⟨a− an, ek⟩2 =

∞∑
k=n+1

λ−2
k ⟨a, ek⟩2.

Since a ∈ H ′
1, the above goes to 0 as n approaches infinity and an converges to a

in H ′
1. So there exists N such that for all n ≥ N we have |an − a|−1 ≤ δ/2. Let

R = δ/2. Then x ∈ D−1(R) = {x ∈ H ′
1 ; |x|−1 ≤ R} implies that |an+x−a|−1 ≤ δ

for all n ≥ N . Hence
|ϕ(an + x)− ϕ(a)| ≤ ε

for all x ∈ D−1(R) and n ≥ N .
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Observe that

µV ⊥
n

(
D−1(R)c

)
= µV ⊥

n

[ ∞∑
k=1

λ−2
k ê2k > R2

]

≤ 1

R2

∞∑
k=1

λ−2
k

∫
ê2k dµV ⊥

n

=
1

R2

∞∑
k=1

λ−2
k |(ek)V ⊥

n
|20 =

1

R2

∞∑
k=n+1

λ−2
k

(5.8)

Since
∑∞

k=1 λ
−2
k converges, (5.8) above gives us

lim
n→∞

µV ⊥
n

(
D−1(R)c

)
= 0. (5.9)

Taking n ≥ N we observe∣∣∣ ∫
H′

ϕdµan+V ⊥
n

− ϕ(a)
∣∣∣ ≤ ∫

H′
|ϕ(an + x)− ϕ(a)| dµV ⊥

n
(x)

=

∫
D−1(R)

|ϕ(an + x)− ϕ(a)| dµV ⊥
n
(x) +

∫
D−1(R)c

|ϕ(an + x)− ϕ(a)| dµV ⊥
n
(x)

≤ sup
x∈D−1(R)

|ϕ(an + x)− ϕ(a)|+
∫
D−1(R)c

|ϕ(an + x)− ϕ(a)|dµV ⊥
n
(x).

The first term on the right is less than ε by the way the choice of R above. For
the second term, observe that using the bound |ϕ(x)| ≤ Keα|x|−1 we have that the
second term is less than or equal to

K

∫
D−1(R)c

eα|x+an|−1 + eα|a|−1 dµV ⊥
n
(x) ≤ KM

∫
H′

1D−1(R)c(e
α|x|−1 + 1)dµV ⊥

n
(x)

where M is a bound for eα|an|−1 . Now the above is

≤ KM

(∫
H′

1D−1(R)cdµV ⊥
n
(x)

) 1
2
(∫

H′
(eα|x|−1 + 1)2dµV ⊥

n
(x)

) 1
2

≤ KM
(
µV ⊥

n
[D−1(R)c]

) 1
2

(∫
H′

(eα|x|−1 + 1)2dµV ⊥
n
(x)

) 1
2

Note that the integral is bounded above using some simple calculations along with
Lemma 5.9. Also using (5.9) we have that the above can be made less than ε for
large enough n. □

6. Gauss Radon Transform in Infinite Dimensions

Using the measure µa+V we can construct the Gauss–Radon transform in the
white noise framework. (Note that the Gauss–Radon transform was originally
constructed for a similar setting in [21].)
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6.1. Hyperplanes in H0. In infinite dimensions we define a hyperplane as fol-
lows:

Definition 6.1. A hyperplane of an infinite dimensional Hilbert space H0 is given
by the set

αv + v⊥ = {αv + x ; x ∈ H0, ⟨x, v⟩0 = 0}
where α is a real number and v is a non-zero unit vector in H0.

For such an affine subspace the measure µαv+v⊥ has the following characteristic
equation and Segal-Bargmann Transform:∫

H′
ei⟨x,y⟩ dµαv+v⊥(x) = eiα⟨v,y⟩−

1
2 ⟨yv⊥ ,y

v⊥ ⟩, y ∈ H (6.1)

and ∫
H′

e⟨x,z⟩−
1
2 ⟨z,z⟩ dµαv+v⊥(x) = eα⟨v,z⟩−

1
2 ⟨z,v⟩

2

, z ∈ Hc. (6.2)

Notice that the above is analogous to what we have observed in Rn. Using this
measure µαv+v⊥ we can now define the Gauss–Radon transform in the white noise
framework.

Definition 6.2. For a measurable function ϕ : H′ → R satisfying |ϕ(x)| ≤
Keα|x|−1 with K,α > 0 we define the Gauss–Radon transform to be the func-
tion on the hyperplanes of H0 given by

Gϕ(αv + v⊥) =

∫
H′

ϕ(x) dµαv+v⊥(x).

In [21] Mihai and Sengupta also demonstrated that this measure can be con-
structed using the Kolmogorov theorem and Gaussian measures µn on Rn specified
by

µ̂n(k) = eiα⟨k,vn⟩− 1
2 (|k|

2−|⟨k,vn⟩|2)

where vn = (⟨v, e1⟩, . . . , ⟨v, en⟩). Note that if |vn| = 1, then the above is the
Gaussian measure on the hyperplane {x ∈ Rn ; ⟨vn, x⟩ = α} = αv + v⊥.

Putting these ideas together we have the following theorem

Proposition 6.3. Let v ∈ span{e1, . . . , en} ⊂ H0 be a unit vector and v⃗n =
(⟨v, e1⟩, . . . , ⟨v, en⟩) ∈ Rn. Then for any ϕ of the form F (⟨·, e1⟩, . . . , ⟨·, en⟩) where
F is a integrable function with respect to the measure µαv⃗n+v⃗⊥

n
on Rn we have

Gϕ(αv + v⊥) =

∫
H′

ϕdµαv+v⊥ =

∫
αv⃗n+v⃗⊥

n

F dµαv⃗n+v⃗⊥
n
.

6.2. Disintegration. Here we demonstrate a Fubini like theorem for our Gauss-
Radon Transform. The theorem allows us to break up the integral into integrals
over finite and infinite dimensional (affine) subspaces.

Lemma 6.4. Let ϕ be a test function or a sequentially continuous function on H′

satisfying |ϕ(x)| ≤ Keα|x|−1 for constants K,α ≥ 0. Let Vn = span{e1, . . . , en}
and a ∈ Vn. Then∫

H′
ϕdµa+a⊥ =

∫
H′

∫
H′

ϕ(x+ y) dµV ⊥
n
(y) dµa+(a⊥∩Vn)(x) (6.3)
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Proof. We first show that the above holds for ϕ(x) = ei⟨x,ξ⟩ where ξ ∈ H. The left
hand side of (6.3) is simply the characteristic equation of µa+a⊥ given by (5.1)

ei⟨a,ξ⟩−
1
2 ⟨ξa⊥ ,ξ

a⊥ ⟩ (6.4)

Now for the right hand side we have∫
H′

∫
H′

ei⟨x+y,ξ⟩ dµV ⊥
n
(x)dµa+(a⊥∩Vn)(y)

=

∫
H′

ei⟨x,ξ⟩ dµV ⊥
n
(x)

∫
H′

ei⟨y,ξ⟩dµa+(a⊥∩Vn)(y)

= e
i⟨a,ξ⟩− 1

2 ⟨ξV ⊥
n

,ξ
V ⊥
n

⟩
e−

1
2 ⟨ξa⊥∩Vn

,ξ
a⊥∩Vn

⟩

= ei⟨a,ξ⟩−
1
2 ⟨ξa⊥ ,ξ

a⊥ ⟩ because a⊥ = V ⊥
n ⊕ (a⊥ ∩ Vn)

So the above holds on the dense space given by the linear span of {ei⟨·,ξ⟩ ; ξ ∈ H}.
The rest of the argument is similar to that in the proof of Theorem 5.7. □

This leads us directly into the following relationship between the finite and
infinite dimensional Gauss-Radon transform.

Theorem 6.5. Let ϕ be a sequentially continuous function on H′ satisfying the
bound |ϕ(x)| ≤ Keα|x|−1 for constants K,α ≥ 0. Let Vn = span{e1, e2, . . . , en}
and v ∈ Vn be a unit vector in H0. Then

Gϕ(αv + v⊥) = GFn(αv⃗ + v⃗⊥)

where v⃗ = (⟨v, e1⟩, . . . , ⟨v, en⟩) ∈ Rn and

Fn(x1, . . . , xn) =

∫
H′

ϕ(x1e1 + · · ·+ xnen + y) dµV ⊥
n
(y).

Note that Gϕ is the infinite dimensional Gauss-Radon transform on H′ and GFn

is the finite dimensional Gauss-Radon transform on Rn.

Proof. We first use Lemma 6.4 to rewrite Gϕ(αv + v⊥) as follows

Gϕ(αv + v⊥) =

∫
H′

∫
H′

ϕ(x+ y) dµV ⊥
n
(y) dµαv+(v⊥∩Vn)(x).

Letting ϕ∗(x) =
∫
H′ ϕ(x+ y) dµV ⊥

n
(y) we obtain

Gϕ(αv + v⊥) =

∫
H′

ϕ∗(x) dµαv+(v⊥∩Vn)(x). (6.5)

Since v ∈ Vn we can apply Theorem 5.6 to write the above as∫
H′

ϕ∗(x) dµαv+(v⊥∩Vn)(x) =

∫
H′

ϕ∗(⟨x, e1⟩e1 + · · ·+ ⟨x, en⟩en) dµαv+(v⊥∩Vn)(x).

(6.6)
Also, ϕ∗(⟨x, e1⟩e1 + · · ·+ ⟨x, en⟩en) = F (⟨·, e1⟩, . . . , ⟨·, en⟩) where

Fn(x1, . . . , xn) =

∫
H′

ϕ(x1e1 + · · ·+ xnen + y) dµV ⊥
n
(y)
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is a function on Rn. Thus by Proposition 6.3 we obtain∫
H′

ϕ∗(⟨x, e1⟩e1 + · · ·+ ⟨x, en⟩en) dµαv+(v⊥∩Vn)(x) =

∫
αv⃗+v⃗⊥

Fn dµαv⃗+v⃗⊥ (6.7)

where v⃗ = (⟨v, e1⟩, . . . , ⟨v, en⟩) is the vector in Rn corresponding to v. When we
combine equations (6.5), (6.6), and (6.7) above we obtain the desired result. □

We now arrive at the main result of this paper. Here we demonstrate a limiting
result which returns the value of a function from the function’s Gauss-Radon
transform in the infinite dimensional setting.

Theorem 6.6. Let ϕ be a sequentially continuous function on H′ satisfying the
bound |ϕ(x)| ≤ Keα|x|−1 for constants K,α ≥ 0. For any x ∈ H ′

1 we have

ϕ(x) = lim
n→∞

(2π)
(n−1)

2 e
|x⃗n|2

2

∫
Sn−1

∫ ∞

0

∫
R
Gϕ(αv + v⊥)

e−2πiβ(α−v⃗n·x⃗n)−α2

2 βn−1 dα dβ dσ(v⃗n) (6.8)

where x⃗n = (⟨x, e1⟩, . . . , ⟨x, en⟩) ∈ Rn and for v⃗n = (v1, . . . , vn) ∈ Rn, v = v1e1 +
· · ·+ vnen.

In the above equation the v inside of Gϕ(αv + v⊥) should be thought of as
a function of v⃗n in the since that v is given by v = v1e1 + · · · + vnen when
v⃗n = (v1, . . . , vn).

Proof. We begin by forming the function

Fn(x1, . . . , xn) =

∫
H′

ϕ(x1e1 + · · ·+ xnen + y) dµV ⊥
n
(y). (6.9)

We would like to apply Theorem 3.5 to the above function. The following lemma
shows that Fn inherits the required conditions from ϕ and, thus, Theorem 3.5
applies. □
Lemma 6.7. The function

Fn(x1, . . . , xn) =

∫
H′

ϕ(x1e1 + · · ·+ xnen + y) dµV ⊥
n
(y)

is continuous and exponentially bounded.

Proof. The continuity is easy to check. Observe that if {x⃗(k)} converges to x⃗ in

Rn, then x(k) = x
(k)
1 e1 + · · · + x

(k)
n en converges to x = x1e1 + · · · + xnen with

respect to | · |0 (in fact, with respect to any | · |p or | · |−p norm). Hence

lim
k→∞

Fn(x
(k)
1 , . . . , x(k)

n ) = lim
k→∞

∫
H′

ϕ(x
(k)
1 e1 + · · ·+ x(k)

n en + y) dµV ⊥
n
(y)

and using the assumed bound on ϕ in conjunction with Lemma 5.9 allows us to
apply the dominated convergence theorem to the above to get

=

∫
H′

ϕ(x1e1 + · · ·+ xnen + y) dµV ⊥
n
(y)

= Fn(x1, . . . , xn)
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and thus Fn is continuous on Rn.
We now need to verify that Fn is exponentially bounded. To this end observe

|Fn(x1, . . . , xn)| ≤
∫
H′

|ϕ(x+ y)| dµV ⊥
n
(y)

≤ K

∫
H′

eα|x+y|−1 dµV ⊥
n
(y)

≤ Keα|x|−1

∫
H′

eα|y|−1 dµV ⊥
n
(y)

Now using that the integral in the above is finite by Lemma 5.9 and that |x|−1 ≤
|x|0 we have that Fn is exponentially bounded as a function on Rn. □

Hence applies Theorem 3.5 to Fn we obtain the following

Fn(x⃗n) = (2π)
(n−1)

2 e
|x⃗n|2

2

∫
Sn−1

∫ ∞

0

∫
R
GFn(αv⃗n + v⃗⊥n )

e−2πiβ(α−v⃗n·x⃗n)−α2

2 βn−1 dα dβ dσ(v⃗n). (6.10)

Using Theorem 6.5 to substitute Gϕ(αv + v⊥) for GFn(αv⃗n + v⃗⊥n ) we obtain

Fn(x⃗n) = (2π)
(n−1)

2 e
|x⃗n|2

2

∫
Sn−1

∫ ∞

0

∫
R
Gϕ(αv + v⊥)

e−2πiβ(α−v⃗n·x⃗n)−α2

2 βn−1 dα dβ dσ(v⃗n). (6.11)

We complete the proof by demonstrating that limn→∞ Fn(x⃗n) = ϕ(x). To this
end, note that

lim
n→∞

Fn(x⃗n) = lim
n→∞

∫
H′

ϕ(⟨x, e1⟩e1 + · · ·+ ⟨x, en⟩en + y) dµV ⊥
n
(y) by (6.9)

= lim
n→∞

∫
H′

ϕ(y) dµxn+V ⊥
n
(y) by Theorem 5.7

= ϕ(x) by Proposition 5.10

where xn is taken to be xn = ⟨x, e1⟩e1 + · · ·+ ⟨x, en⟩en.

7. Concluding Remarks

Here we presented, in the infinite dimensional setting, a method of recovering a
function from the function’s Gauss-Radon transform. This method relied heavily
on the the common finite dimensional result involving the Fourier transform which
allows one to recover a function from its Radon transform. There are several
other known methods for recovering a function from its Radon transforms [14,
10, 24]. One fairly common example of this uses Laplace transforms. These were
extended to the finite dimensional Gauss-Radon setting in [6]. An avenue of future
study could potentially extend these inversion formulas to the infinite dimensional
setting.
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