2012

Toward a Regional Radiocarbon Model for the East Texas Woodland Period

Robert Z. Selden Jr.
zselden@sfasu.edu

Timothy K. Perttula
Archeological & Environmental Consultants, LLC

Follow this and additional works at: https://scholarworks.sfasu.edu/crhr

Part of the Applied Statistics Commons, Archaeological Anthropology Commons, Physical Chemistry Commons, Probability Commons, and the Radiochemistry Commons

Tell us how this article helped you.

Repository Citation
https://scholarworks.sfasu.edu/crhr/6

This Presentation is brought to you for free and open access by the Center for Regional Heritage Research at SFA ScholarWorks. It has been accepted for inclusion in CRHR: Archaeology by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.
Toward a Regional Radiocarbon Model for the East Texas Woodland Period

Robert Z. Selden Jr. and Timothy K. Perttula

Department of Anthropology, Texas A&M University, and Center for Regional Heritage Research, Stephen F. Austin State University

Archaeological and Environmental Consultants, LLC

WOODBAND RADIOCARBON

Archaeologists have a lengthy history of tinkering with the manipulation of 14C data, and have made much progress since first advocating for a more flexible method of processing data through the employment of a punch-card data retrieval system (see Taylor et al. 1968). The inductive methodology employed here informs a regional chronology for East Texas Woodland sites. The goals are to explore the process of 14C date combination from sites with four or more samples (n=11) to decrease sampling bias for statistical analysis and determine the modified summed probability distributions (see Bamforth and Grund 2012). McKelvey and Pauluz 2004, Williams 2012), and secondly to employ the resulting median dates within a statistical analysis of regional trends.

ABSTRACT

The 13 °C dates from the Woodland period occupation at the Broadway site were combined into three groups (Figure 12). Group 1 consists of two assays (Beta-157990 and Beta-173089), Group 2 has six assays (Beta-154857, Beta-157991, Beta-154858, Beta-157992, Beta-173089, and Beta-173095), and Group 3 has five assays (Beta-173090, Beta-157991, Beta-182401, Beta-173097, and Beta-182402). Group 3 dates from A.D. 257-344, Group 2 has an age range from A.D. 442-574, and Group 1 dates from A.D. 653-771, indicating a temporal hiatus of 98 calendar years during the late and better-understood Caddo period. This is prior to a 200-year peak in dates from the Sulphur and Sabine River basins for A.D. 50-220, after which a marked increase occurs in the number of dated Woodland sites for the Sulphur, Cypress, Sabine, and Neches River basins from A.D. 600-800.

RESULTS

Although the number of sites is small, they highlight a possible temporal hiatus of nearly 400 years in the Red River basin, and another of nearly 200 years in the Cypress Creek basin, both of which appear here on the basis of data from one site in each river basin. The remaining peaks correlate with populations from the kernel density plot, and they illustrate a small peak in the Red River basin around 400 B.C. followed by slight increases in the dates from the Sulphur, Cypress, and Sabine basins around 200 B.C. This is prior to a 200-year peak in dates from the Sulphur and Sabine River basins for A.D. 50-220, after which a marked increase occurs in the number of dated Woodland sites for the Sulphur, Cypress, Sabine, and Neches River basins from A.D. 600-800.

CONCLUSIONS

We are quickly approaching an era where typological assignments can be associated with radiocarbon samples in this same manner, but significant advances in correlating these data with specific aspects of archaeological assemblages still need to be made as we progress in our understanding of the archaeological and historical contexts of the East Texas Woodland period. This database of radiocarbon dates from the East Texas Woodland period is a representative of this period and speaks to the need for further research.