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A Nonlinear Splitting Algorithm for Systems of Partial
Differential Equations with self-Diffusion
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Abstract

Systems of reaction-diffusion equations are commonly used in biological models of food chains.
The populations and their complicated interactions present numerous challenges in theory and
in numerical approximation. In particular, self-diffusion is a nonlinear term that models over-
crowding of a particular species. The nonlinearity complicates attempts to construct efficient and
accurate numerical approximations of the underlying systems of equations. In this paper, a new
nonlinear splitting algorithm is designed for a partial differential equation that incorporates self-
diffusion. We present a general model that incorporates self-diffusion and develop a numerical
approximation. The numerical analysis of the approximation provides criteria for stability and
convergence. Numerical examples are used to illustrate thetheoretical results.

Keywords: reaction-diffusion equations, nonlinear splitting, self-diffusion, overcrowding,
food-chain model

1. Introduction

This paper is motivated by a three-species food chain model first developed in [20] and
analyzed in [1]. Recently, this model was improved to consider overcrowding effects of the
population species in [4]. Our goal of this paper is to develop reliable, accurate, efficient, and
valid numerical approximations that incorporate the nonlinear overcrowding term for the top
predator.

Consider an invasive speciesr that has invaded a certain two dimensional habitat. Letr
predate on a middle predatorv, which in turn predates on a preyu. A partial differential equation
that includes overcrowding is,

∂tr = d3∆r + d4∆r2 + cr2 − w3
r2

v+ D3
≡ d3∆r + d4∆r2 + h(u, v, r), (1.1)

∂tv = d2∆v− a2v+ w1
uv

u+ D1
− w2

vr
v+ D2

≡ d2∆v+ g(u, v, r), (1.2)

∂tu = d1∆u+ a1u− b2u2 − w0
uv

u+ D0
≡ d1∆u+ f (u, v, r), (1.3)

1This author was supported in part by internal research grant(No. 107552-26423-150) from Stephen F. Austin State
University.
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defined onR+ × Ω. HereΩ ⊂ R
2 and∆ is the two dimensional Laplacian operator. We definex

to be the spatial coordinate vector in two dimensions. The parametersd1, d2 andd3 are positive
diffusion coefficients. The initial populations are given as

u(0, x) = u0(x), v(0, x) = v0(x), r(0, x) = r0(x) x ∈ Ω,

are assumed to be nonnegative and uniformly bounded onΩ. Appropriate boundary conditions
are specified. Here, we examine Dirichlet boundary conditions, however our analysis extends to
the Neumann boundary condition case in a straight forward manner. The parameter definitions
are given in Table 1:

Symbols Meaning
u Prey
v Middle Predator
r Top Predator
a1 Growth rate of preyu
a2 Measures the rate at whichv dies out when there is nou to prey on and nor
w′i s Maximum value that the per-capita rate can attain
D0, D1 Measure the level of protection provided by the environmentto the prey
b2 Measure of the competition among prey,u
D2 Value ofv at which its per capita removal rate becomesw2/2
D3 Loss inr due to the lack of its favorite food,v
c Growth rate ofr via sexual reproduction
d4 The strength of the overcrowding term

Table 1: List of parameters used in the three species food chain model. All these parameters are positive constants.

This model is rich in dynamics and stems from the Leslie-Gower formulation [11], that is,
the middle predator is depredated at a Holling type II rate, and the generalist top predator grows
logistically ascr, and loses due to intraspecies competition as−w3r2/(v+ D3). The literature is
abundant with investigations of variants to this model [2, 3, 7, 10, 12-17, 19, 21]. However, the
development and analysis of accurate numerical approximations has not been considered, espe-
cially in situations involving the overcrowding term. The overcrowding term can be viewed as a
severe penalty to crowding in the top predator forcing a strong movement to lower concentrations
of r.

While the above model motivates this paper we develop a nonlinear algorithm for

ut = ∆
(

u+ u2
)

+ f (u, x, t), (1.4)

where∆ is the standard 2−dimensional Laplacian,f (u, x, t) is a nonlinear reactive term, and
appropriate initial and boundary conditions are given foru(x, t).

This paper is organized as follows. In section 2 we present the nonlinear variable time split-
ting model which is based on a modified Douglass-Gunn splitting method. Section 3 details our
numerical analysis of the proposed algorithm. It is shown that the method is stable and second-
order convergent in time under reasonable criteria for the temporal and spatial sizes. Section 4
contains examples that illustrate our theoretical resultsand explores the dynamics of (1.1)-(1.3),
in particular the effect of the self-diffusion and overcrowding on the numerical solution. Section
5 summarizes our key results.
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In the ensuing discussion all lowercase bold letters indicate vectors, uppercase letters are
used for matrices. Theℓ2-norm is used throughout discussions unless otherwise specified. That
is, given a vectorx ∈ Rn, then

‖x‖ =

√

√

n
∑

i=1

|xi |2.

The matrix norms considered will be the spectral norm, whichis induced by the above vector
norm.

We define a scheme ascomputationally efficient if it is second order accuratein space and
time or better and thenumber of operations per time step is directly proportionalto the number
of unknowns.

2. Nonlinear Model

We consider the following model

ut = ∆
(

u+ u2
)

+ f (u, x, t), (2.1)

where∆ is, in this case, the 2−dimensional Laplacian,x = (x, y), and appropriate initial con-
ditions are given. Dirichlet boundary conditions are assumed. Without loss of generality, we
assume a square domainΩ = (0, 1)× (0, 1) in the following discussions.

GivenN ≫ 0, we may inscribe overΩ the meshDh = {(xi , y j) | i, j = 0, 1, . . . ,N + 1}, where
h = 1/(N+1) andxi = ih andyi = jh for i, j = 0, 1, . . . ,N+1. Further, we defineui, j(t) as the ap-
proximation to the exact solutionu(xi, y j , t) and letv = (u1,1(t), u2,1(t), . . . , uN,1(t), . . . , uN,N(t))⊤.
Similarly, let f = ( f (u(x1, y1, t), x1, y1, t), f (u(x2, y2, t), x2, y1, t), . . . , f (u(xN, yN, t), xN, yN, t))⊤.
We propose the following semidiscretized scheme to approximate (2.1),

dv
dt
= (P+ R+ PD(v) + RD(v)) v + f,

whereP, R, andD(v) areN2 × N2 matrices defined asP = IN ⊗ T, R = T ⊗ IN, andD(v) =
diag(v) = diag(u1,1(t), . . . , uN,N(t)). IN is theN × N identity matrix andT is the symmetric, tridi-
agonalN×N matrix with 1/h2 as the lower and upper diagonals and−2/h2 as the main diagonal.
Here, we have used second-order finite differences to approximate the spatial derivatives, how-
ever other suitable approximates may be incorporated. However, the theoretical requirements
that will ensure stability of our algorithm will need to be resolved to reflect a different spatial
discretization. Nevertheless, these changes in the spatial discretization will not affect the tem-
poral advancement developed in this paper. A variable time-step second order Crank-Nicolson
method is used to advance the solution in time, namely,

(

I −
τk

2
(P+ R+ PDk+1 + RDn+1)

)

vk+1 =

(

I +
τk

2
(P+ R+ PDk + RDk)

)

vk

+
τk

2
(fk+1 + fk) + O

(

τ3k

)

,

whereτk is the variable temporal step,Dk = D(vk), and fk is the vectorf evaluated at timetk,
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wheretk =
k−1
∑

i=0

τi . The above can then be factored as,

(

I −
τk

2
P
) (

I −
τk

2
R
) (

I −
τk

2
PDk+1

) (

I −
τk

2
RDk+1

)

vk+1

=

(

I +
τk

2
P
) (

I +
τk

2
R
) (

I +
τk

2
PDk

) (

I +
τk

2
RDk

)

vk +
τk

2
(fk+1 + fk) + O

(

τ3k

)

. (2.2)

This is to be solved using our modified variable time Douglass-Gunn splitting method, namely,
(

I −
τk

2
P
)

ṽ(1) =

(

I +
τk

2
(P+ 2R+ 2PDk + 2RDk)

)

vk + τkfk, (2.3a)
(

I −
τk

2
R
)

ṽ(2) = ṽ(1) −
τk

2
Rvk, (2.3b)

(

I −
τk

2
PDk+1

)

ṽ(3) = ṽ(2) −
τk

2
PDkvk, (2.3c)

(

I −
τk

2
RDk+1

)

vk+1 = ṽ(3) −
τk

2
RDkvk +

τk

2
(fk+1 − fk) (2.3d)

The third and fourth steps involve the implicit termDk+1. This can be approximated by taking
an Euler step, that is,Dk+1 = diag(vk+1) = Dk + τk diag((P+ R+ PDk + RDk)vk + fk) + O

(

τ2k

)

.

Furthermore, an Euler step is used to evaluatefk+1. This approximation maintains the second
order accuracy of the splitting method. As will be shown in the following section, the variable
time step is necessary to ensure stability of the method.

This splitting method can be shown to be equivalent to (2.2). To see this, first multiply (2.3d)
by

(

1−
τk

2
P
) (

1−
τk

2
R
) (

1−
τk

2
PDk+1

)

to obtain,
(

I −
τk

2
P
) (

I −
τk

2
R
) (

I −
τk

2
PDk+1

) (

I −
τk

2
RDk+1

)

vk+1

=

(

I −
τk

2
P
) (

I −
τk

2
R
) (

I −
τk

2
PDk+1

) (

ṽ(3) −
τk

2
RDkvk +

τk

2
(fk+1 − fk)

)

=













1+
τk

2
(P+ R+ PDk + RDk) +

τ2k

4
(PR+ PPDk + RPDk + PRDk + RRDk + PDk+1RDk)













vk

+
τk

2
(fk + fk+1) −

τ2k

2
(P+ R+ PDk+1) (fk+1 − fk) + O

(

τ3k

)

=













1+
τk

2
(P+ R+ PDk + RDk) +

τ2k

4
(PR+ PPDk + RPDk + PRDk + RRDk + PDkRDk)













vk

τk

2
(fk + fk+1) + O

(

τ3k

)

=

(

I +
τk

2
P
) (

I +
τk

2
R
) (

I +
τk

2
PDk

) (

I +
τk

2
RDk

)

vk +
τk

2
(fk + fk+1) + O

(

τ3k

)

.

3. Numerical Analysis

The numerical solution of the food-chain model (1.1)-(1.3) must remain nonnegative for ini-
tial nonnegative datum. Hence, the same requirement is in place for our alternative nonlinear
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model in (2.1). We first provide the criteria to ensure nonnegativity of the numerical solution and
then use these criteria in the ensuing discussions. To this end, we have the following results.

Lemma 3.1. ‖T‖ ≤
4
h2
.

Proof. This is a standard property of the matrixT,which has eigenvaluesλ j = −
4
h2

sin2

(

π j
2(N + 1)

)

,

j = 1, . . . ,N.

Theorem 3.1. If
τk

h2
<

1
2 max{1,maxi=1,...,N2{(vk)i}}

, (3.1)

then the matrices

I −
τk

2
P, I −

τk

2
R, I +

τk

2
P, I +

τk

2
R, I −

τk

2
PDk+1, I −

τk

2
RDk+1, I +

τk

2
PDk, I +

τk

2
RDk

are nonsingular. Also, I−
τk

2
P, I −

τk

2
R, I −

τk

2
PDk+1, I −

τk

2
RDk+1 are inverse positive and

I +
τk

2
P, I +

τk

2
R, I +

τk

2
PDk, I +

τk

2
RDk are nonnegative.

Proof. Using the previous lemma, we have
∥

∥

∥

∥

∥

τk

2
P
∥

∥

∥

∥

∥

=
τk

2
‖In ⊗ T‖ =

τk

2
‖T‖

≤
τk

2
×

4
h2
< 1.

Hence,I +
τk

2
P is nonsingular and nonnegative. A similar argument shows that I +

τk

2
R is

nonsingular and nonnegative. Next, consider
∥

∥

∥

∥

∥

τk

2
PDk

∥

∥

∥

∥

∥

=
τk

2
‖(IN ⊗ T)Dk‖ ≤

τk

2
‖T‖‖Dk‖

≤
τk

2
×

4
h2
× ‖vk‖ < 1.

Hence,I +
τk

2
PDk is nonsingular and nonnegative. A similar argument shows that I +

τk

2
RDk is

nonsingular and nonnegative.

Now consider the matrixM = I −
τk

2
P. SinceMi j ≤ 0 for i , j and the weak row sum

criterion is satisfied, we have thatM−1 exists and thatM is inverse positive [6, 9]. A similar

argument gives thatI −
τk

2
R is nonsingular and inverse positive. Next, we consider the matrix

I −
τk

2
PDk+1 = I −

τk

2
PDk+1 −

τ2k

2
diag((P+ R+ PDk + RDk)vk) + O

(

τ3k

)

.

Due to the accuracy of our scheme, we only need to consider thematrix

N = I −
τk

2
PDk+1 −

τ2k

2
diag((P+ R+ PDk + RDk)vk) .

5



Note thatNi, j ≤ 0 for i , j since the off-diagonal elements ofI −
τk

2
PDk are nonpositive. Further,

since we are concerned with the positivity of the solution, we assume thatvk ≥ 0. Now consider

N2
∑

j=1

Ni, j = 1−
τk

2h2

(

(vk) j−1 − 2(vk) j + (vk) j+1

)

−
τ2k

2
diag((P+ R+ PDk + RDk)vk) j ,

for i = 1, . . . ,N2 and where (vk)0 = (vk)N2+1 = 0. We need to show that the weak row sum
criterion is satisfied, thus,

N2
∑

j=1

Ni, j = 1−
τk

2h2

(

(vk) j−1 − 2(vk) j + (vk) j+1

)

−
τ2k

2
diag((P+ R+ PDk + RDk)vk) j

= 1+
τk

h2
(vk) j −

τk

2h2

(

(vk) j−1 + (vk) j+1

)

−
τ2k

2
diag((P+ R+ PDk + RDk)vk) j

>
1
2
+
τk

h2
(vk) j −

τ2k

2
diag((P+ R+ PDk + RDk)vk) j

>
1
2
+
τk

h2
(vk) j −

τ2k

2
diag((‖P‖ + ‖R‖ + ‖P‖‖Dk‖ + ‖R‖‖Dk‖)vk) j

≥
1
2
+
τk

h2
(vk) j − 4τk

[

τk

h2

(

1+max{(vk) j}
)

]

(vk) j

>
1
2
+
τk

h2
(vk) j − 4τk(vk) j >

τk

h2
max{1,max{(vk) j}} +

τk

h2
(vk) j − 4τk(vk) j

≥ 2τk

[

1
h2
− 2

]

(vk) j ≥ 0,

sinceh ≤
√

1/2 for N ≫ 1.Hence, we have that the weak row sum criterion is satisfied, since we

have strict inequality forj = 1 andN2. A similar argument gives thatI −
τk

2
RDk+1 is nonsingular

and inverse positive.

Corollary 3.1. If
τk

h2
<

1
4 max{1,maxi=1,...,N2{(vk)i}}

, (3.2)

then the conditions from Theorem 3.1 still hold, and in addition, the matrices

I − τkPDk+1, I − τkRDk+1, I + τkPDk, I + τkRDk

are nonsingular. Also, I− τkPDk+1 and I− τkRDk+1 are inverse positive and I+ τkPDk and I+
τkRDk are nonnegative.

In order to prove stability, we now introduce a definition andsome lemmas.

Definition 3.1. Let ‖ · ‖ be an induced matrix norm. Then the associated logarithmic norm
µ : Cn×n→ R of A ∈ Cn×n is defined as

µ(A) = lim
h→0+

‖In + hA‖ − 1
h

,

where In ∈ C
n×n is the identity matrix.

6



Remark3.1. When the induced matrix norm being considered is the spectral norm, thenµ(A) =
max

{

λ : λ is an eigenvalue of (A+ A∗)/2
}

.

Remark3.2. If the matrixA negative definite, then we haveµ(A) ≤ 0.

Lemma 3.2. For α ∈ C we have

‖E(αA)‖ ≤ E(αµ(A)),

where E(·) is the matrix exponential.

Proof. See Golub and Van Loan [8].

Lemma 3.3. Let (3.2) hold, thenµ(PDk), µ(RDk), µ(PDk+1), µ(RDk+1) ≤
1
2

max{|∆wk|} + ch2,

wherewk is the exact solution to(2.1) at time t= tk and c is a positive constant independent of h.

Proof. We only need to consider the matrixPDk, as the other results will follow in a similar
manner. By Remark 3.1 we haveµ(PDk) = max

{

λ : λ is an eigenvalue of (PDk + (PDk)
∗)/2

}

.

By direct calculation we havePDk + (PDk)∗ = PDk + DkP = diag(X1, . . . ,XN), thus we only
need consider the eigenvalues of each block. To that end, we see

(Xℓ)i, j =































(

ui−1,ℓ + ui,ℓ
)

/2h2, i − j = 1,
−2ui,ℓ/h

2, i − j = 0
(

ui,ℓ + ui+1,ℓ
)

/2h2, i − j = −1
0, otherwise.

By applying Gers̆chgorin’s circle theorem we have
∣

∣

∣λi + 2ui,ℓ/h
2
∣

∣

∣ ≤
∣

∣

∣

(

ui−1,ℓ + ui,ℓ
)

/2h2
∣

∣

∣ +
∣

∣

∣

(

ui,ℓ + ui+1,ℓ
)

/2h2
∣

∣

∣

=
(

ui−1,ℓ + ui,ℓ
)

/2h2 +
(

ui,ℓ + ui+1,ℓ
)

/2h2,

due to the positivity of the solution. Thus we have

λi + 2ui,ℓ/h
2 ≤

(

ui−1,ℓ + ui,ℓ
)

/2h2 +
(

ui,ℓ + ui+1,ℓ
)

/2h2

λi ≤
ui−1,ℓ − 2ui,ℓ + ui+1,ℓ

2h2

=
1
2

uxx

∣

∣

∣

∣

∣

(xi ,yℓ,tk)
+ O

(

h2
)

and by a similar argument

−

(

1
2

uxx

∣

∣

∣

∣

∣

(xi ,yℓ,tk)
+ O

(

h2
)

)

≤ λi .

Combining the above results givesµ(PDk) ≤ max{|∆wk|/2} + ch2, wherec is a positive constant
independent ofh, which is the desired result. The other bounds follow similarly.

Lemma 3.4. If (3.2) holds andwk ∈ W2,∞(Ω), for k ≥ 0, wherewk is the exact solution to(2.1)
at time t= tk, then we have

∥

∥

∥

∥

∥

I +
τk

2
P
∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

I +
τk

2
R
∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

(

I −
τk

2
P
)−1

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

(

I −
τk

2
R
)−1

∥

∥

∥

∥

∥

∥

≤ 1+ O
(

τ2k

)

7



and
∥

∥

∥

∥

∥

I +
τk

2
PDk

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

I +
τk

2
RDk

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

(

I −
τk

2
PDk+1

)−1
∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

(

I −
τk

2
RDk+1

)−1
∥

∥

∥

∥

∥

∥

≤ 1+ O (τk) .

Proof. First, we recall that under (3.2) we have the [1/0] Padé approximation

I +
τk

2
P = E

(

τk

2
P
)

+ O
(

τ2k

)

, (3.3)

whereE(·) is the matrix exponential. Thus, taking the norm of both side of (3.3) gives
∥

∥

∥

∥

∥

I +
τk

2
P
∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

E
(

τk

2
P
)

+ O
(

τ2k

)

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

E
(

τk

2
P
)

∥

∥

∥

∥

∥

+ O
(

τ2k

)

≤ E
(

τk

2
µ(P)

)

+ O
(

τ2k

)

≤ 1+ O
(

τ2k

)

,

where we have appealed to the fact thatP is negative definite. A similar argument gives
∥

∥

∥

∥

∥

I +
τk

2
R
∥

∥

∥

∥

∥

≤

1+ O
(

τ2k

)

. Under (3.2) we have the [0/1] Padé approximation

(

I −
τk

2
P
)−1
= E

(

τk

2
P
)

+ O
(

τ2k

)

.

So, as above we obtain

∥

∥

∥

∥

∥

∥

(

I −
τk

2
P
)−1

∥

∥

∥

∥

∥

∥

≤ 1+ O
(

τ2k

)

. A similar argument gives

∥

∥

∥

∥

∥

∥

(

I −
τk

2
R
)−1

∥

∥

∥

∥

∥

∥

≤

1+ O
(

τ2k

)

. Lemma 3.3 gives thatµ(PDk), µ(RDk), µ(PDk+1), µ(RDk+1) ≤
1
2

max{|∆wk|} + ch2,

and hence, similar arguments as above will give the remaining bounds sincewk ∈W2,∞(Ω).

First we provide a proof of stability while freezing the nonlinear source term and nonlinear
amplification matrices. This is equivalent to assuming thatthe source term and amplification
matrices are constant.

Theorem 3.2. Assume that the nonlinear source term and the nonlinear amplification matrices
are frozen. If(3.1) holds, then the linearized scheme(2.2) is unconditionally stable in the von
Neumann sense, that is,

‖zk+1‖ ≤ c‖z0‖, k ≥ 0,

wherez0 = v0 − ṽ0 is an initial error, zk+1 = vk+1 − ṽk+1 is the(k + 1)th perturbed error vector,
and c> 0 is a constant independent of k andτk.

Proof. Note that after rearranging (2.2) we have

zk+1 =

(

I −
τk

2
RDk+1

)−1 (

I −
τk

2
PDk+1

)−1 (

I −
τk

2
R
)−1 (

I −
τk

2
P
)−1

×

(

I +
τk

2
P
) (

I +
τk

2
R
) (

I +
τk

2
PDk

) (

I +
τk

2
RDk

)

zk. (3.4)
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Taking the norm of both sides of (3.4) gives

‖zk+1‖ =

∥

∥

∥

∥

∥

∥

(

I −
τk

2
RDk+1

)−1 (

I −
τk

2
PDk+1

)−1 (

I −
τk

2
R
)−1 (

I −
τk

2
P
)−1

×

(

I +
τk

2
P
) (

I +
τk

2
R
) (

I +
τk

2
PDk

) (

I +
τk

2
RDk

)

zk

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

(

I −
τk

2
RDk+1

)−1
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

I −
τk

2
PDk+1

)−1
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

I −
τk

2
R
)−1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

I −
τk

2
P
)−1

∥

∥

∥

∥

∥

∥

×

∥

∥

∥

∥

∥

(

I +
τk

2
P
)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

I +
τk

2
R
)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

I +
τk

2
PDk

)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

I +
τk

2
RDk

)

∥

∥

∥

∥

∥

‖zk‖

≤ (1+ ckτk) ‖zk‖, (3.5)

whereck is a positive constant independent ofτk andh. We have also appealed to the bounds
from Lemma 3.4 in the last step. Now using (3.5) we have

‖zk+1‖ ≤ (1+ ckτk) ‖zk‖ ≤

k
∏

i=0

(1+ ciτi)‖z0‖ ≤

















1+C
k

∑

i=0

τi

















‖z0‖, (3.6)

wherec0, c1, . . . , ck, C are positive constants independent ofτi , i = 0, . . . , k. Since we are on a

finite time interval, say [0,T] with T < ∞, we may claim that
k

∑

i=0

τk ≤ T. Thus, (3.6) becomes

‖zk‖ ≤

















1+C
k

∑

i=0

τi

















‖z0‖ ≤ (1+CT)‖z0‖ ≤ c‖z0‖,

which gives the desired stability.

In an effort to show stability and convergence without freezing any of the nonlinear terms,
we prove some lemmas which will provide useful bounds.

Lemma 3.5. Assume that(3.2) holds. Letwk be the exact solution to(2.1) and letvk be the
solution to(2.2). If ξk = vk + t∗(wk − vk) for some t∗ ∈ (0, 1) then we have

‖PD(ξk)‖, ‖RD(ξk)‖ ≤ max{|∆wk|} + ch2,

where D(ξk) = diag(ξk) and c is a positive constant independent of h.

Proof. We first considerPD(ξk). Note thatPD(ξk) = diag(X1, . . . ,XN), where

(Xℓ)i, j =































(ξi−1,ℓ)k/h
2, i − j = 1,

−2(ξi,ℓ)k/h
2, i − j = 0,

(ξi+1,ℓ)k/h
2, i − j = −1,

0, otherwise.

Further, we have‖PD(ξk)‖ ≤ max
ℓ=1,...,N

‖Xℓ‖. So, by applying Gers̆chgorin’s circle theorem we may

obtain the following relation for‖Xℓ‖
∣

∣

∣λ + 2(ξi,ℓ)k/h
2
∣

∣

∣ ≤
∣

∣

∣(ξi−1,ℓ)k/h
2
∣

∣

∣ +
∣

∣

∣(ξi+1,ℓ)k/h
2
∣

∣

∣ .
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Usingξk = vk + t∗(wk − vk) and thatvk is nonnegative under (3.1), we have
∣

∣

∣

∣

∣

∣

λ +
2
[

(1− t∗)(vi,ℓ)k + t∗(wi,ℓ)k
]

h2

∣

∣

∣

∣

∣

∣

≤
(1− t∗)(vi−1,ℓ)k + t∗(wi−1,ℓ)k + (1− t∗)(vi+1,ℓ)k + t∗(wi+1,ℓ)k

h2
.

(3.7)

We consider the two cases in (3.7). First, we consider

λ +
2
[

(1− t∗)(vi,ℓ)k + t∗(wi,ℓ)k
]

h2
≤

(1− t∗)(vi−1,ℓ)k + t∗(wi−1,ℓ)k + (1− t∗)(vi+1,ℓ)k + t∗(wi+1,ℓ)k

h2

and after rearrangement we have

λ ≤
1
h2

[

(1− t∗)(vi−1,ℓ)k + t∗(wi−1,ℓ)k − 2
[

(1− t∗)(vi,ℓ)k + t∗(wi,ℓ)k
]

+ (1− t∗)(vi+1,ℓ)k + t∗(wi+1,ℓ)k
]

=
1− t∗

h2

[

(vi−1,ℓ)k − 2(vi,ℓ)k + (vi+1,ℓ)k
]

+
t∗

h2

[

(wi−1,ℓ)k − 2(wi,ℓ)k + (wi+1,ℓ)k
]

= (1− t∗)

(

wxx

∣

∣

∣

∣

∣

(xi ,yℓ,tk)
+ O

(

h2
)

)

+ t∗
(

wxx

∣

∣

∣

∣

∣

(xi ,yℓ,tk)
+ O

(

h2
)

)

= wxx

∣

∣

∣

∣

∣

(xi ,yℓ ,tk)
+ O

(

h2
)

. (3.8)

We now consider the other case of the inequality from (3.7)

−
[

(1− t∗)(vi−1,ℓ)k + t∗(wi−1,ℓ)k + (1− t∗)(vi+1,ℓ)k + t∗(wi+1,ℓ)k
]

h2
≤ λ+

2
[

(1− t∗)(vi,ℓ)k + t∗(wi,ℓ)k
]

h2

and by work similar to that used to obtain (3.8), we obtain

−

(

wxx

∣

∣

∣

∣

∣

(xi ,yℓ,tk)
+ O

(

h2
)

)

≤ λ. (3.9)

Combining (3.8) and (3.9) gives

‖Xℓ‖ ≤ |wxx|

∣

∣

∣

∣

∣

(xi ,yℓ ,tk)
+ ch2,

wherec is some positive constant independent ofh. Thus, we have

‖PD(ξk)‖ ≤ max
ℓ=1,...,N

‖Xℓ‖ ≤ max{|(wxx)k|} + ch2.

Similar arguments give
‖RD(ξk)‖ ≤ max

{

|(wyy)k|
}

+ ch2,

and thus, combining the results, we have

‖PD(ξk)‖, ‖RD(ξk)‖ ≤ max{|∆wk|} + ch2,

as desired.
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Lemma 3.6. Assume that(3.2) holds. Letwk be the solution to(2.1) and letvk be the solution to
(2.2). If ξk = vk + t∗(wk − vk) for some t∗ ∈ (0, 1) then we have

‖PD(Rξk)‖ ≤ max{|∆2wk|} + ch2,

where D(Rξk) = diag(Rξk) and c is a positive constant independent of h.

Proof. This is shown in a similar fashion as the previous lemma and isremoved for brevity.

Theorem 3.3. Letτℓ, ℓ = 0, 1, . . . , k be sufficiently small. If

τk

h2
<

1
4 max{1,maxi=1,...,N2{(vk)i , (ṽk)i}}

(3.10)

holds,wk ∈ W4,∞(Ω), for k ≥ 0, wherewk is the true solution to(2.1), and‖fv(ξ)‖ ≤ K < ∞, for
ξ ∈ RN2

, then the scheme(2.2) is unconditionally stable in the von Neumann sense, that is,

‖zk+1‖ ≤ c̃‖z0‖, k ≥ 0,

wherez0 = v0 − ṽ0 is an initial error, zk+1 = vk+1 − ṽk+1 is the(k + 1)st perturbed error vector,
andc̃ > 0 is a constant independent of k andτk.

Proof. Let vk be a solution and̃vk be a perturbed solution to (2.2). We first note that if (3.10)
holds, then we have the results which follow from (3.2) holding. Let

Φk =

(

I −
τk

2
P
) (

I −
τk

2
R
)

and Ψk =

(

I +
τk

2
P
) (

I +
τk

2
R
)

,

then we have

Φk

(

I −
τk

2
PD(vk+1)

) (

I −
τk

2
RD(vk+1)

)

vk+1 = Ψk

(

I +
τk

2
PD(vk)

) (

I +
τk

2
RD(vk)

)

vk

+
τk

2
(f(vk+1) + f(vk)),

(3.11)

and

Φk

(

I −
τk

2
PD(ṽk+1)

) (

I −
τk

2
RD(ṽk+1)

)

ṽk+1 = Ψk

(

I +
τk

2
PD(ṽk)

) (

I +
τk

2
RD(ṽk)

)

ṽk

+
τk

2
(f(ṽk+1) + f(ṽk)),

(3.12)

Lettingzk = vk − ṽk and subtracting (3.12) from (3.11), we have

Φk (g(vk+1) − g(ṽk+1)) = Ψk (h(vk) − h(ṽk)) +
τk

2
(f(vk+1) − f(ṽk+1)) +

τk

2
(f(vk) − f(ṽk)), (3.13)

where

g(vk+1) =
(

I −
τk

2
PD(vk+1)

) (

I −
τk

2
RD(vk+1)

)

vk+1, h(vk) =
(

I +
τk

2
PD(vk)

) (

I +
τk

2
RD(vk)

)

vk.
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Note that, forτk sufficiently small we haveg(vk+1) = g(ṽk+1) + gv(ξ
(1)
k+1)zk+1 for someξ(1)

k+1 ∈

L(vk+1; ṽk+1), whereL(vk+1; ṽk+1) is the line segment connectingvk+1 to ṽk+1 in R
N2
. Similarly

we have thath(vk) = h(ṽk) + hv(ξ
(2)
k )zk for someξ(2)

k ∈ L(vk; ṽk). Note that this meansξ(1)
k+1 =

ṽk+1 + t∗(vk+1 − ṽk+1) for somet∗ ∈ (0, 1) andξ(2)
k = ṽk + s∗(vk − ṽk) for somes∗ ∈ (0, 1). Thus,

(3.13) becomes

Φkgv(ξ
(1)
k+1)zk+1 = Ψkhv(ξ

(2)
k )zk +

τk

2
(f(vk+1) − f(ṽk+1)) +

τk

2
(f(vk) − f(ṽk)). (3.14)

Further, we havef(vk) = f(ṽk) + fv(ξ
(3)
k )zk for someξ(3)

k ∈ L(vk; ṽk). Thus, (3.14) becomes

Φkgv(ξ
(1)
k+1)zk+1 = Ψkhv(ξ

(2)
k )zk +

τk

2
fv(ξ

(3)
k+1)zk+1 +

τk

2
fv(ξ

(3)
k )zk

(

Φkgv(ξ
(1)
k+1) −

τk

2
fv(ξ

(3)
k+1)

)

zk+1 =

(

Ψkhv(ξ
(2)
k ) +

τk

2
fv(ξ

(3)
k )

)

zk

and solving forzk+1 gives

zk+1 =

(

Φkgv(ξ
(1)
k+1) −

τk

2
fv(ξ

(3)
k+1)

)−1 (

Ψkhv(ξ
(2)
k ) +

τk

2
fv(ξ

(3)
k )

)

zk

=
(

gv(ξ
(1)
k+1)

)−1
Φ−1

k

(

I −
τk

2

(

gv(ξ
(1)
k+1)

)−1
Φ−1

k fv(ξ
(3)
k+1)

)−1

×
(

Ψkhv(ξ
(2)
k )

)

(

I +
τk

2

(

hv(ξ
(2)
k )

)−1
Ψ−1

k fv(ξ
(3)
k )

)

zk. (3.15)

Taking the norm of both sides of (3.15) gives

‖zk+1‖ =

∥

∥

∥

∥

∥

∥

(

gv(ξ
(1)
k+1)

)−1
Φ−1

k

(

I −
τk

2

(

gv(ξ
(1)
k+1)

)−1
Φ−1

k fv(ξ
(3)
k+1)

)−1

×
(

Ψkhv(ξ
(2)
k )

)

(

I +
τk

2

(

hv(ξ
(2)
k )

)−1
Ψ−1

k fv(ξ
(3)
k )

)

zk

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

(

gv(ξ
(1)
k+1)

)−1
∥

∥

∥

∥

∥

∥

∥Φ−1
k

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

I −
τk

2

(

gv(ξ
(1)
k+1)

)−1
Φ−1

k fv(ξ
(3)
k+1)

)−1
∥

∥

∥

∥

∥

∥

× ‖Ψk‖
∥

∥

∥hv(ξ
(2)
k )

∥

∥

∥

∥

∥

∥

∥

∥

(

I +
τk

2

(

hv(ξ
(2)
k )

)−1
Ψ−1

k fv(ξ
(3)
k )

)

∥

∥

∥

∥

∥

‖zk‖

≤
(

1+ c1,kτk
)

∥

∥

∥

∥

(

gv(ξ
(1)
k+1)

)−1
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

I −
τk

2

(

gv(ξ
(1)
k+1)

)−1
Φ−1

k fv(ξ
(3)
k+1)

)−1
∥

∥

∥

∥

∥

∥

×
∥

∥

∥hv(ξ
(2)
k )

∥

∥

∥

∥

∥

∥

∥

∥

(

I +
τk

2

(

hv(ξ
(2)
k )

)−1
Ψ−1

k fv(ξ
(3)
k )

)

∥

∥

∥

∥

∥

‖zk‖, (3.16)

by Lemma 3.4. We now show bounds for
∥

∥

∥

∥

(

gv(ξ
(1)
k+1)

)−1
∥

∥

∥

∥

and
∥

∥

∥hv(ξ
(2)
k )

∥

∥

∥ . By carefully considering
the matrix-vector product and then differentiating, we observe that

gv(ξ
(1)
k+1) =

∂

∂v

(

I −
τk

2
PD(v)

) (

I −
τk

2
RD(v)

)

v
∣

∣

∣

∣

∣

v=ξ(1)
k+1

= I − τkPD(ξ(1)
k+1) − τkRD(ξ(1)

k+1) +
τ2k

2
PD(ξ(1)

k+1)RD(ξk+1) +
τ2k

4
PD(Rξ(1)

k+1)

=
(

I − τkPD(ξ(1)
k+1)

) (

I − τkRD(ξ(1)
k+1)

)

+ O
(

τ2k

)

, (3.17)
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for τk sufficiently small, where we have appealed to the fact that‖PD(ξ(1)
k+1)‖, ‖RD(ξ(1)

k+1)‖ < ∞

by Lemma 3.5. and‖PD(Rξ(1)
k+1)‖ < ∞ by Lemma 3.6, combined with our assumptions that

wk ∈W4,∞ for k ≥ 0. Using (3.17) we have
(

gv(ξk+1
)−1
=

(

I − τkRD(ξk+1)
)−1 (

I − τkPD(ξk+1)
)−1
+ O

(

τ2k

)

and then
∥

∥

∥

∥

(

gv(ξ
(1)
k+1)

)−1
∥

∥

∥

∥

=

∥

∥

∥

∥

(

I − τkRD(ξk+1)
)−1 (

I − τkPD(ξk+1)
)−1
+ O

(

τ2k

)

∥

∥

∥

∥

=

∥

∥

∥

∥

E(τkPD(ξk+1)E(τkRD(ξk+1) + O
(

τ2k

)

∥

∥

∥

∥

≤ E(τkµ(PD(ξk+1))E(τkµ(RD(ξk+1)) + c4,kτ
2
k

≤ 1+ c2,kτk, (3.18)

wherec2,k, c4,k are positive constants independent ofh, τk, k, by similar arguments to that used
in Lemma 3.4. By similar arguments used to obtain (3.17), we may obtain

hv(ξ
(2)
k+1) =

(

I + τkPD(ξ(2)
k )

) (

I + τkRD(ξ(2)
k )

)

+ O
(

τ2k

)

and using similar arguments as those used to obtain (3.17) we may obtain
∥

∥

∥hv(ξ
(2)
k+1)

∥

∥

∥ ≤ 1+ c3,kτk, (3.19)

wherec3,k is a positive constant independent ofh, τk, andk. Combining (3.16)-(3.19) we now
have

‖zk+1‖ ≤

3
∏

i=1

(

1+ ci,kτk
)

∥

∥

∥

∥

∥

∥

(

I −
τk

2

(

gv(ξ
(1)
k+1)

)−1
Φ−1

k fv(ξ
(3)
k+1)

)−1
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

I +
τk

2

(

hv(ξ
(2)
k )

)−1
Ψ−1

k fv(ξ
(3)
k )

)

∥

∥

∥

∥

∥

‖zk‖

≤
(

1+ c5,kτk
)

∥

∥

∥

∥

∥

∥

(

I −
τk

2

(

gv(ξ
(1)
k+1)

)−1
Φ−1

k fv(ξ
(3)
k+1)

)−1
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

I +
τk

2

(

hv(ξ
(2)
k )

)−1
Ψ−1

k fv(ξ
(3)
k )

)

∥

∥

∥

∥

∥

‖zk‖.

Forτk sufficiently small we have

‖zk+1‖ ≤
(

1+ c5,kτk
)

∥

∥

∥

∥

∥

E
(

τk

2

(

gv(ξ
(1)
k+1)

)−1
Φ−1

k fv(ξ
(3)
k+1)

)

+ O
(

τ2k

)

∥

∥

∥

∥

∥

×

∥

∥

∥

∥

∥

E
(

τk

2

(

hv(ξ
(2)
k )

)−1
Ψ−1

k fv(ξ
(3)
k )

)

+ O
(

τ2k

)

∥

∥

∥

∥

∥

‖zk‖

≤
(

1+ c5,kτk
)

[

E
(

τk

2

[
∥

∥

∥

∥

(

gv(ξ
(1)
k+1)

)−1
∥

∥

∥

∥

∥

∥

∥Φ−1
k

∥

∥

∥

∥

∥

∥fv(ξ
(3)
k+1)

∥

∥

∥ + c6,kτ
2
k

+

∥

∥

∥

∥

(

hv(ξ
(2)
k )

)−1
∥

∥

∥

∥

∥

∥

∥Ψ−1
k

∥

∥

∥

∥

∥

∥fv(ξ
(3)
k )

∥

∥

∥

])

+ c7,kτ
2
k

]

‖zk‖

≤
(

1+ c5,kτk
)

[

E
(

τkK
2

[
∥

∥

∥

∥

(

gv(ξ
(1)
k+1)

)−1
∥

∥

∥

∥

∥

∥

∥Φ−1
k

∥

∥

∥ +

∥

∥

∥

∥

(

hv(ξ
(2)
k )

)−1
∥

∥

∥

∥

∥

∥

∥Ψ−1
k

∥

∥

∥

])

+ c8,kτ
2
k

]

‖zk‖

≤
(

1+ c5,kτk
)

[

E
(

τkK
2

(

2+ c9,kτk
)

)

+ c8,kτ
2
k

]

‖zk‖ ≤ (1+ ckτk) ‖zk‖, (3.20)

whereci,k, i = 5, 6, 7, 8, 9, ck are positive constants independent ofh, τk, andk. Considering
(3.20), recursively, we have

‖zk+1‖ ≤

k
∏

i=0

(1+ ciτi) ‖z0‖ ≤

















1+C
k

∑

i=0

τi

















‖z0‖ ≤ (1+CT) ‖z0‖ ≤ c̃‖z0‖,

13



whereci , i = 0, . . . , k, C, c̃ are constants independent ofh, τi , i = 0, . . . , k, and the stepk, and
k

∑

i=0

τi ≤ T < ∞. This gives the desired stability.

Remark3.3. It should be noted that sinceξ(i)
k ∈ L(vk; ṽk), i = 1, 2, 3, then we have that any

matrices involvingξ(i)
k will also satisfy (3.10), hence the positivity of our solution is not affected

by the previous analysis. Further, Corollary 3.1 will applyto the above.

In the above theorem, stability has been guaranteed withoutfreezing any of the nonlinear
terms. We now show that the conditions used to ensure stability are also sufficient to ensure
convergence. This current analysis is an improvement as it considers the contributions of all
terms.

Theorem 3.4. Letτℓ, ℓ = 0, 1, . . . , k be sufficiently small. If

τk

h2
<

1
4 max{1,maxi=1,...,N2{(vk)i , (wk)i}}

(3.21)

holds,wk ∈ W4,∞(Ω), for k ≥ 0, wherewk is the true solution to(2.1), and‖fv(ξ)‖ ≤ K < ∞, for
ξ ∈ RN2

, then(2.2) is convergent.

Proof. Let wk be the true solution to (2.1). Once again, we note that if (3.21) holds, then we have
the results which follow from (3.2) holding. Then, similar to Theorem 3.3, we have

Φk

(

I −
τk

2
PD(wk+1)

) (

I −
τk

2
RD(wk+1)

)

wk+1 = Ψk

(

I +
τk

2
PD(wk)

) (

I +
τk

2
RD(wk)

)

wk

+
τk

2
(fk+1 + fk) + O

(

τ3k

)

+ O
(

τkh
2
)

,

(3.22)

whereD(wk) = diag(wk). Lettingεk = wk − vk and subtracting (2.2) from (3.22), we have

Φk (g(wk+1) − g(vk+1)) = Ψk (h(wk) − h(vk)) + O
(

τ3k

)

+ O
(

τkh
2
)

, (3.23)

whereg and h are defined as in Theorem 3.3. Note that, forτk sufficiently small we have
g(wk+1) = g(vk+1) + gv(ξ

(1)
k+1)εk+1 for someξ(1)

k+1 ∈ L(wk+1; vk+1), h(wk) = h(vk) + hv(ξ
(2)
k )εk

for someξ(2)
k ∈ L(wk; vk), andf(wk) = f(vk) + fv(ξ

(3)
k )εk for someξ(3)

k ∈ L(wk; vk). Thus, (3.23)
becomes

εk+1 =
(

gv(ξ
(1)
k+1)

)−1
Φ−1

k

(

I −
τk

2

(

gv(ξ
(1)
k+1)

)−1
Φ−1

k fv(ξ
(3)
k+1)

)−1 (

Ψkhv(ξ
(2)
k )

)

×

(

I +
τk

2

(

hv(ξ
(2)
k )

)−1
Ψ−1

k fv(ξ
(3)
k )

)

εk + O
(

τ3k

)

+ O
(

τkh
2
)

(3.24)

by similar arguments as those used in Theorem 3.3 to obtain (3.15). Taking the norm of both
sides of (3.24) gives

‖εk+1‖ ≤ (1+ ckτk) ‖εk‖ + c1,kτ
3
k + c2,kτkh

2, (3.25)

wherec1,k, c2,k, ck are positive constants independent ofh, τk, k, for τk sufficiently small and we
have appealed to the fact that‖PD(ξ(1)

k+1)‖, ‖RD(ξ(1)
k+1)‖ < ∞ by Lemma 3.5. and‖PD(Rξ(1)

k+1)‖ < ∞
14



by Lemma 3.6, combined with our assumptions thatwk ∈ W4,∞ for k ≥ 0. Considering (3.25)
recursively gives

‖εk+1‖ ≤

k
∏

i=0

(1+ ciτi) ‖ε0‖ +

k
∑

i=0

ci

(

τ3i + τih
2
)

≤

















1+C
k

∑

i=0

τi

















‖ε0‖ +C
k

∑

i=0

(

τ3i + τih
2
)

≤ (1+CT) ‖ε0‖ +C
k

∑

i=0

(

τ3i + τih
2
)

≤ C
k

∑

i=0

(

τ3i + τih
2
)

, (3.26)

whereC is a positive constant independent ofh, τk, andk,
k

∑

i=0

τi ≤ T, and we have used the fact

thatε0 = 0. Also note that

k
∑

i=0

τ3i ≤ τ
2

k
∑

i=0

τi ≤ τT and
k

∑

i=0

τih
2 = h2

k
∑

i=0

τi ≤ Th2,

where max
i=0,1,...,k

{τi} ≤ τ. Therefore,

lim
τ,h→0
‖εk+1‖ = lim

τ,h→0
C

(

Tτ + Th2
)

= 0,

which ensures the anticipated convergence.

4. Numerical Experiments

We provide numerical experiments that provide empirical evidence which suggests our non-
linear operator splitting method is stable, convergent, and efficient. The first two examples focus
exclusively on simulations of (2.1). The first example examines the numerical convergence rate
and computational efficiency, in light of a known exact solution. The second example examines
the numerical solution in the case of no reactive term. In this latter case no theoretical solution
is known, however, the numerical solution satisfies our energy estimates and converges at the
anticipated rate. In our last two examples, the numerical procedure is used to examine the effect
of self-diffusion on the nonlinear food chain model in (1.1)-(1.3).

The computations are carried out on a MatlabR© platform and its parallel computing toolbox
on a HP EliteDesk 800 G1 work station with an IntelR© Core(TM) i7-4770 3.40GHz processor
with 16 GB of RAM.

4.1. Nonlinear Model - Example 1

Consider (2.1) with

f (x, y, t) = −2π2
[

(cos(πx) sin(πy))2 + (cos(πy) sin(πx))2 − 2(sin(πx) sin(πy))2
]

exp
(

−4π2t
)

This reactive term has been chosen so that an exact solution to the partial differential equation is
known, that is,

u(x, y, t) = sin(πx) sin(πy) exp(−2π2t).
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Let u(τ)
i, j be the numerical solution atxi = ih, y j = jh, and at timeT with τ as the temporal size.

For a fixedh we have|u(τ)
i, j − u| ≈ Cτp for which p is the order of accuracy that can be estimated

as

p ≈
1

ln 2
1

N2

N
∑

i, j=1

ln

∣

∣

∣

∣
u(τ)

i, j − u(xi , y j,T)
∣

∣

∣

∣

∣

∣

∣

∣

u(τ/2)
i, j − u(xi , y j,T)

∣

∣

∣

∣

.

Let h = .01 and based on (3.1) letτ =
1
2

10−4. Let T = 1. We estimate the approximate order of

p ≈ 1.998841.

This indicates that our nonlinear splitting algorithm is converging at the anticipated second order
rate.

Since the exact solution decays exponentially the temporalstep is constant throughout the

entire computation. Clearly, the maximum of the theoretical solution occurs at (
1
2
,
1
2

). Hence,

we calculate the natural logarithm of the numerical and exact solution over time at the maximum
location. Therefore, we expect to see a linear function witha slope of−2π2. In Figure 1(a) we see
that the numerical solution decays at nearly the identical rate as the exact solution; the two curves
are virtually indistinguishable. We use a linear least squares to estimate the slope of the numerical
solution decay and determine a value of−19.7392088. In Figure 1(b) the absolute difference is
shown to aid in the comparison. Notice that the slope of 1(b) is 2π2 − 19.7392088≈ .006.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

0

1

2

3

4

5

6

7 x 10−3

Figure 1: The maximum value of the numerical and theoreticalsolution both occur at the center of the domain (.5, .5).
(a) A plot of the natural logarithm ofu(.5, .5, tk) (blue) andu50,50,k (red) are shown. The slope is calculated through
a linear least squares and is approximately−19.7392088, which is close to the anticipated exponential decay rate of
−2π2 ≈ −19.7392088. (b) An absolute difference of the values shown in (a). The slope of the difference of the logs
is .006. This shows strong agreement between the theoretical and numerical solutions. Parameters used:h = .01,
τ = 5× 10−5.

We shall examine the computationally efficiency of the algorithm as we increase the number
of unknowns,N, that is, ash decreases in size. Letτ = 10−6 and consider the computational
time for 1000 temporal steps forN = 21, 31, . . . , 401. The computational time, in seconds, is
determine for increasingN. Figure 2 shows a log-log plot of the computational time versus
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N. A linear least squares approximation is used to determine the slope of the line and is found
to be 1.654628. Hence, the computational time scales asN1.654628, which shows the proposed
nonlinear splitting method is computationally efficient.
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Figure 2: A log-log plot of the computational time, in seconds, versusN after 1000 iterations. The temporal step is held
constant,τ = 10−6, while h = 1/(N − 1). A linear least squares approximates the slope of the lineto be 1.654628. This
indicates that the computational time is scales asN1.654628. The computational time of an efficient scheme should scale
no slower thanN2. This indicates that the proposed nonlinear splitting scheme is highly efficient.

4.2. Nonlinear Model - Example 2

Consider (2.1) with f (x, y, t) = 0. Let

E(t) = ‖u‖22 ≡
∫

Ω

|u(x, y, t)|2dΩ.

Multiplying (2.1) byu and integrating over the spatial domain yields, after usingthe divergence
theorem,

E′(t) = 2
∫

Ω

(u+ u2)∆udΩ.

If we assume Dirichlet boundary conditions and then integrate by parts, we obtain
∫

Ω

u2∆udΩ = −2
∫

u|∇u|2dΩ

Hence,

E′(t) + 2
∫

Ω

|∇u|2dΩ ≤ 0.

17



By the Poincaré inequality we have,

1
C
‖u‖22 ≤

∫

Ω

|∇u|2dΩ

for a constantC. Therefore,

E′(t) +
2
C

E(t) ≤ 0.

Hence, we have an upper bound for the energy norm foru, that is,

E(t) ≤ exp

(

−
2
C

t

)

E(0).

Let h = .01, τ = 10−5, andT = 5. Let the initial condition beu(x, y, 0) = sin(πx) sin(πy).
We determine the numerical solution and determine the energy norm over the duration of the
computation. In Figure 3 we plot the natural logarithm of energy norm and clearly see that the
numerical solution decays at a rate of approximately−19.7397958. This further validates the
effectiveness of the numerical approximation technique.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−120

−100

−80

−60

−40

−20

0

t

Figure 3: A plot of the natural logarithm of the energy norm ofv(x, y, t) throughout the duration of the computation. The
slope is determined to be−19.7397958 using a linear least squares approximation. This agrees with the anticipated upper
bound and suggests a value ofC ≈ −.101318. The temporal step is held constant,τ = 10−6, while h = .01.

Consider the same initial condition and spatial step size. We approximate the temporal con-
vergence rate in a similar fashion to the previous example, that is,

p ≈
1

ln 2
1

N2

N
∑

i, j=1

ln

∣

∣

∣

∣

u(τ)
i, j − u

(τ f )
i, j

∣

∣

∣

∣

∣

∣

∣

∣

u(τ/2)
i, j − u

(τ f )
i, j

∣

∣

∣

∣

,
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whereτ =
1
2

10−4 andu
(τ f )
i, j is the numerical approximation using a fine temporal step size,τ f =

10−12. We find that
p ≈ 1.994504,

which is at the predicated second order convergence rate.

4.3. Three-Species Food Chain Model

The nonlinear food-chain model is approximated through ournonlinear operator splitting
scheme. Recall Eqs. 1.1-1.3, namely,

∂tr = d3∆r + d4∆r2 + cr2 − w3
r2

v+ D3

∂tv = d2∆v− a2v+ w1
uv

u+ D1
− w2

vr
v+ D2

∂tu = d1∆u+ a1u− b2u2 − w0
uv

u+ D0
.

The partial differential equation forr is determined through our nonlinear splitting scheme, while
the other partial differential equations are determined through a second order accurate Peaceman-
Rachford splitting scheme [5]. For clarity, the numerical procedure is detailed here:

(

I −
τk

2
P
)

r̃ (1) =

(

I +
τk

2
(P+ 2R+ 2PDk + 2RDk)

)

rk + τkhk,

(

I −
τk

2
P
)

ṽ(1) =

(

I +
τk

2
P
)

vk +
1
2
τkgk

(

I −
τk

2
P
)

ũ(1) =

(

I +
τk

2
P
)

uk +
1
2
τkfk

(

I −
τk

2
R
)

r̃ (2) = r̃ (1) −
τk

2
Rrk,

(

I −
τk

2
R
)

ṽk+1 =

(

I +
τk

2
R
)

v(1) +
1
2
τkgk+1

(

I −
τk

2
R
)

ũk+1 =

(

I +
τk

2
R
)

u(1) +
1
2
τkfk+1

(

I −
τk

2
PDk+1

)

r̃ (3) = r̃ (2) −
τk

2
PDkr k,

(

I −
τk

2
RDk+1

)

r k+1 = r̃ (3) −
τk

2
RDkr k +

τk

2
(hk+1 − hk) ,

wherer k =
(

rk
11, r

k
21, . . . , r

k
NN

)⊤
, vk =

(

vk
11, v

k
21, . . . , v

k
NN

)⊤
, anduk =

(

uk
11, u

k
21, . . . , u

k
NN

)⊤
.

4.3.1. Example 3
As in the previous example, the convergence rate is estimated. Let u(x, y, 0) = v(x, y, 0) =

r(x, y, 0) = sin(πx) sin(πy), d1 = d2 = d3 = d4 = a1 = a2 = w1 = w2 = w3 = 1, D0 = D1 = D2 =

D3 = 10, andc = .2. Leth = .01 andτ is fixed at 10−4. We determine the convergence rate,p,
is approximately 2.001871, 1.991905, and 1.994640 for the numerical solutions foru, v, andr,
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respectively. This indicates the numerical solution is converging at the anticipated second order
rate.

As in example 1, we estimate the computational efficiency by determining the computational
time to complete 1000 temporal steps forN = 21, 31, . . . , 401. The computational time, in
seconds, is determined for increasingN. It is determined that the computational time scales as
N1.736, which indicates our method is computationally efficient.

4.3.2. Example 4
Consider the case whend4 = 0. The populationr may blow-up in finite time, that is,

lim
t→T−<∞

r(x, y, t)→ ∞. Notice the coefficient onr2 is c−w3/(v+D3). If v = 0 andc−w3/D3 < 0

it is known thatr(x, y, t) will decay to zero. However, ifv , 0 then it has been shown thatr
may still blow-up in finite time even ifc− w3/D3 < 0 for Neumann boundary conditions [1]. In
the case of Dirichlet boundary conditions it has been conjectured that for a fixed parameter set
and initial conditions there will exists a criticalc∗ for which ∀c > c∗ the solution will blow-up
in finite time. We provide empirical evidence that supports this conjecture for the parameters
shown in Table 2. The initial conditions are

v(x, y, 0) = r(x, y, 0) = 100 sin(πx) sin(πy), u(x, y, 0) = .1v(x, y, 0)

Let h = .01 andτ0 = 5×10−6. The minimum stepsize is set to be 10−10. In the case ofd4 = 0 the
critical c∗ ≈ 5.07. Ford4 = .025 thec∗ ≈ 5.25. Hence, we see that ford4 , 0 the critical value of
c∗ is larger, due to the fact the nonlinearity (∆r2) further dampens the population growth ofr.

Table 2: List of parameters used in Example 4.

a1 = 5.0 a2 = 0.75 w0 = 0.55 w1 = 1.0
w2 = 0.25 w3 = 1.2 b2 = 0.5 D0 = 20.0
D1 = 13.0 D2 = 10.0 D3 = 20.0
d1 = 0.1 d2 = 0.1 d3 = 0.1

5. Conclusions

In this paper a new adaptive nonlinear operator splitting scheme was developed and analyzed
to solve reaction diffusion equations with a nonlinear self-diffusion term. Under minimal cri-
teria we are able to shown convergence and stability of the proposed method. The numerical
experiments further validate these results. The method is also computationally efficient and ex-
periments suggest the computational time to completion scales less thanN2, which is the total
number of unknowns. The efficiency of the algorithm is a notable accomplishment of the splitting
design while the numerical analysis provides confidence in the utility of the numerical algorithm
in applications, in particular nonlinear food chain models. In particular, our examples indicated
that our method is computationally efficient and accurate for a complicated and nonlinear food
chain models.
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