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Abstract

Systems of reaction-flusion equations are commonly used in biological modelsad fthains.
The populations and their complicated interactions presemerous challenges in theory and
in numerical approximation. In particular, selffidision is a nonlinear term that models over-
crowding of a particular species. The nonlinearity congiks attempts to construdfieient and
accurate numerical approximations of the underlying systef equations. In this paper, a new
nonlinear splitting algorithm is designed for a partidteliential equation that incorporates self-
diffusion. We present a general model that incorporates délfstbn and develop a numerical
approximation. The numerical analysis of the approxinmaficovides criteria for stability and
convergence. Numerical examples are used to illustratihtweetical results.

Keywords: reaction-dffusion equations, nonlinear splitting, selffdsion, overcrowding,
food-chain model

1. Introduction

This paper is motivated by a three-species food chain modsldeveloped in@O] and
analyzed in |I|1]. Recently, this model was improved to coasiovercrowding fects of the
population species ilﬂ[4]. Our goal of this paper is to depetgiable, accurate figcient, and
valid numerical approximations that incorporate the nuedir overcrowding term for the top
predator.

Consider an invasive specieghat has invaded a certain two dimensional habitat. rLet
predate on a middle predatgrwhich in turn predates on a prey A partial diferential equation
that includes overcrowding is,

2

or = dsAr + dsAr? +cr? — Wa o = dsAr + dsAr? + h(u, v, r), (1.1)
3
oV = hAV—ayv+w d - W v = doAv+g(u, v, 1) (1.2)
tvV. = 02 2 1U+D1 2V+D2_2 g, v, r), .
uv
ou = dhAU+ agu — bou? — wo = diAu+ f(u,v,r), (1.3)
u+ Do
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defined orR* x Q. HereQ c R? andA is the two dimensional Laplacian operator. We define
to be the spatial coordinate vector in two dimensions. Tharpatergsl;, d, andds are positive
diffusion codicients. The initial populations are given as

u(0,x) = up(x), V(0,X) =vo(x), r(0,x) =ro(X) XeQ,

are assumed to be nonnegative and uniformly bounde@. olppropriate boundary conditions

are specified. Here, we examine Dirichlet boundary conustibowever our analysis extends to
the Neumann boundary condition case in a straight forwantha The parameter definitions
are given in Tablgl1:

Symbols Meaning

u Prey

v Middle Predator

r Top Predator

a Growth rate of prey

a Measures the rate at whietdies out when there is noto prey on and no
w's Maximum value that the per-capita rate can attain

Do, D1 Measure the level of protection provided by the environntetie prey
b, Measure of the competition among pray,

D, Value ofv at which its per capita removal rate becomegg2

D3 Loss inr due to the lack of its favorite food,

c Growth rate ofr via sexual reproduction

ds The strength of the overcrowding term

Table 1: List of parameters used in the three species fodd ohadel. All these parameters are positive constants.

This model is rich in dynamics and stems from the Leslie-Gdi@emulation ], that is,
the middle predator is depredated at a Holling type Il ratel, the generalist top predator grows
logistically ascr, and loses due to intraspecies competitiorasr?/(v + D3). The literature is
abundant with investigations of variants to this model [27,310, 12-17, 19, 21]. However, the
development and analysis of accurate numerical approidmshas not been considered, espe-
cially in situations involving the overcrowding term. Theescrowding term can be viewed as a
severe penalty to crowding in the top predator forcing agfrmovement to lower concentrations
of r.

While the above model motivates this paper we develop a meatialgorithm for

U= AU+ )+ f(uxt), (1.4)

whereA is the standard 2dimensional Laplacianf(u, x,t) is a nonlinear reactive term, and
appropriate initial and boundary conditions are givenuipg t).

This paper is organized as follows. In section 2 we presenhtnlinear variable time split-
ting model which is based on a modified Douglass-Gunn gmiitthethod. Section 3 details our
numerical analysis of the proposed algorithm. It is shovat the method is stable and second-
order convergent in time under reasonable criteria for ¢éhepbral and spatial sizes. Section 4
contains examples that illustrate our theoretical resntsexplores the dynamics 6f1)-(1.3),
in particular the &ect of the self-dfusion and overcrowding on the numerical solution. Section
5 summarizes our key results.
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In the ensuing discussion all lowercase bold letters irtdig@ctors, uppercase letters are
used for matrices. Th&-norm is used throughout discussions unless otherwisefiguaecT hat

is, given a vectok € R", then
n
ER DN
i=1

The matrix norms considered will be the spectral norm, wilscinduced by the above vector
norm.

We define a scheme asmputationally gicientif it is second order accurati space and
time or better and theumber of operations per time step is directly proportiotwathe number
of unknowns

2. Nonlinear Model

We consider the following model
U = A(u + u2) + f(u, x, 1), (2.1)

whereA is, in this case, the-dimensional Laplacians = (x,y), and appropriate initial con-
ditions are given. Dirichlet boundary conditions are assdmWithout loss of generality, we
assume a square domam= (0, 1) x (0, 1) in the following discussions.

GivenN > 0, we may inscribe ove®2 the mestDy, = {(x;,yj) |1, j =0,1,..., N+ 1}, where
h=1/(N+1)andx = ihandy; = jhfori,j=0,1,...,N+1 Further, we define, j(t) as the ap-
proximation to the exact solutian(x;, yj, t) and letv = (ug1(t), uza(®), . .., una(®), . . ., Unn(t) T
Similarly, let f = (f(u(xg,y, 1), X1, Y1, 1), F(U(X2, Y2, 1), X2, V1, 1), . . ., F(U(XN, Yo D), Xns Y, D) T
We propose the following semidiscretized scheme to apprate [21]),

% =(P+ R+ PD(v) + RD(V)) Vv +f,
whereP, R, andD(v) areN? x N? matrices defined aB = IN® T,R = T ® Iy, andD(v) =
diagl) = diag@Uga(t), ..., unn(t)). In is theN x N identity matrix andT is the symmetric, tridi-
agonalN x N matrix with 1/h? as the lower and upper diagonals arfh? as the main diagonal.
Here, we have used second-order finitdedences to approximate the spatial derivatives, how-
ever other suitable approximates may be incorporated. Menwvénhe theoretical requirements
that will ensure stability of our algorithm will need to besodved to reflect a dlierent spatial
discretization. Nevertheless, these changes in the spé@etization will not &ect the tem-
poral advancement developed in this paper. A variable 8tap-second order Crank-Nicolson
method is used to advance the solution in time, namely,

(l - T—Z" (P+ R+ PDy.1 + RDn+1))Vk+1 _ (l + T—Z" (P+R+ PDy + RDK))vk
Tk
+ > (frer + i) +O(TE),

wherery is the variable temporal stepyx = D(vk), andfy is the vectorf evaluated at timé,



k-1
wherety, = Z 7i. The above can then be factored as,
i=0

(| - BP)(l - 3R)(| - BF>Dk+1)(| - T—ZkRD<+1)Vk+1

2 2 2
T T T T T
_ (| + EKP)(I + %‘R)(| + EkPDk)(I + EKRQ)Vk + (e +10+0(7). 22)
This is to be solved using our modified variable time Dougl@ssn splitting method, namely,
(l - T—zkp)vm - (l + (P + 2R+ 2PD+ 2RDK))vk - (2.3a)
(l - T—sz)v@ = - ZRy, (2.3b)
(| - T—Z"PDM) 7@ - @ _ T—Z"PDkvk, (2.3¢)
T ~ T T
(1 - 3RDca)vier = ¥ = ERDVc+ 3 (foa — ) (2.3d)

The third and fourth steps involve the implicit tefdy,1. This can be approximated by taking
an Euler step, that i9y;1 = diag{k,1) = Dk + 7« diag((P + R+ PDg + RD) vk + fi) + O(TE).
Furthermore, an Euler step is used to evaldgate This approximation maintains the second
order accuracy of the splitting method. As will be shown ia thllowing section, the variable
time step is necessary to ensure stability of the method.

This splitting method can be shown to be equivalerfig)(2To see this, first multiply (3d)

by
Tk Tk Tk
(1-3P)(1- ZR)(1- 5P0e)
to obtain,
(1= 3P)(1 - ZRI(1 - 3Pxa (1 - FROa)ven
- (l - T—sz)(l - T—Z"R)(l - T—szDk+l)(\7<3> - RO+ 3 (e - fk))

2
= {1 + T—Zk(P + R+ PDy + RDy) + Zk(PR+ PPD + RPD( + PRD( + RRD + PDk+1RD<)} Vi
2

.
+ 5 (fk+ fiwa) = = (P+ R+ PDa) (fiea — ) + O(x)

2
1+ T—Zk(P + R+ PDy + RDy) + %‘(PR+ PPDy + RPD + PRD( + RRD + PDkRQ)}Vk

T—Z" (fic + fie) + O (1)

T % % % % 3
_ (| + EF>)(| + ER)(| + EF>Dk)(| + ERQ)VK+ 2 (fc+ fied) + O (7).

3. Numerical Analysis

The numerical solution of the food-chain modelt(I.3) must remain nonnegative for ini-
tial nonnegative datum. Hence, the same requirement isaicepiior our alternative nonlinear
4



model in [ZT)). We first provide the criteria to ensure nonnegativityhaf humerical solution and
then use these criteria in the ensuing discussions. Totklisvee have the following results.

4
Lemma 3.1. ||T|| < R

. . . 4 j

Proof. Thisis a standard property of the matffixwhich has eigenvaluel = e sir? (Z(Nﬂiil)) ,
i=1...,N O
Theorem 3.1. If

Tk 1

— < s 3.1

h? ~ 2maxl max.y ne{(Vi)il} 31
then the matrices

Tk Tk Tk Tk Tk Tk Tk Tk

| — EP, | — ER, | + EP, | + ER, | —EPDkJr]_, | — ERD(Jr]_, | + EPDk, | + ERD(
are nonsingular. Also, + %P, I - T—sz, | - T—Z"PDk+1, I - T—Z"RD<+1 are inverse positive and
| + %P, | + T—ZkR, | + T—szDk, | + T—Z"RD< are nonnegative.
Proof. Using the previous lemma, we have

Tkpl| - T« _ T

27 = FwneTi = Fam

v 4
< E Xﬁ < 1

Hence,| + T—Z"P is nonsingular and nonnegative. A similar argument shows Ith T—ZkR is
nonsingular and nonnegative. Next, consider

Tk Tk Tk
“PD = (I T)D < —=|[T|lIID
> PDx 2||( N®T)Dill < 2|| [IIDxll
v 4
< E X ﬁ Xkl < 1.

Hence|l + T—ZkPDk is nonsingular and nonnegative. A similar argument shoasl th T—Z"RD( is
nonsingular and nonnegative.

Now consider the matriM = | — T—Z"P. SinceM;; < O fori # j and the weak row sum
criterion is satisfied, we have thdt™* exists and thaM is inverse positivel [6,/9]. A similar
argument gives thdt— T—ZkR is nonsingular and inverse positive. Next, we consider th&im

2
I - T—ZI(PDK+1 — - T—ZkPDk+1 - T—deiag((P+ R+ PDy + RDJvi) + O (73).

Due to the accuracy of our scheme, we only need to considenatiéx

2
N =1- 2PDy; - T—zkdiag((P+ R+ PDy + RDVA).
5



Note thatN; ; < 0 fori # j since the é-diagonal elements of- EPDk are nonpositive. Further,
since we are concerned with the positivity of the solutioa,agsume that, > 0. Now consider

2
DN = L= o ()2 = 200, + (1) - T—Z"diag((P + R+ PDy + RDYVL);
j=1

fori = 1,...,N? and where\(x)o = (Vi)nz+1 = 0. We need to show that the weak row sum
criterion is satisfied, thus,

2
DN = 1= o (W) - 24 + (W)e1) - Adiag((P+ R+ PDy+ RDYV,

2

T
= 1+ %(Vk)j (Vidj-1 + (Vi)j+1) - Ekd|ag((P+ R+ PDy + RDJVi);

e 2
1 Tk k .
> 5+ ﬁ(vk),- - Ed|ag((P+ R+ PDk + RD)Vi);

1 72
> 5 hz(Vk)] kOllag((IIPII+IIRII+|IF’|||ID|<|I+||RI||ID|<II)V|<),-

1
2 e

\%

(Vk)] 4ty

2 (14 mat (o) | (),
1
> S Th = 4nw); > o5 maxL max(vidjl) + o (W); — 4

> 2Tk[h—12—2

) = 0,

sinceh < /1/2 for N > 1. Hence, we have that the weak row sum criterion is satisfiadesive
. . . . 2 .. . Tk . .
have strict inequality fof = 1 andN“. A similar argument gives that- ERD(” is nonsingular
and inverse positive. O
Corollary 3.1. If
Tk 1
e = Amaxl, max_1_n2{(W)i}}

.....

(3.2)
then the conditions from Theorem 3.1 still hold, and in additthe matrices
| —TkPDk+1, | —TkRD<+1, | +TkPDk, | +TkRDK

are nonsingular. Also, + 7¢PDy,1 and | — 7«RDx,; are inverse positive and+ ryPDy and | +
7«RDx are nonnegative.

In order to prove stability, we now introduce a definition aodne lemmas.

Definition 3.1. Let]|| - || be an induced matrix norm. Then the associated logarithroitnn
u:C™ - R of Ae C™"is defined as
lln + hA]
() = fim AL,

where |, € C™" is the identity matrix.



Remark3.1 When the induced matrix norm being considered is the sdewiren, thenu(A) =
max{a : Ais an eigenvalue ofA + A")/2}.

Remark3.2 If the matrix A negative definite, then we hauéA) < 0.
Lemma 3.2. For a € C we have

IE(@A)l < E(au(A),
where H:) is the matrix exponential.
Proof. See Golub and Van Loahl[8]. O
Lemma 3.3. Let (3.2) hold, thenu(PDy), u(RDx), u(PDk;1), u(RDy;1) < %max{|Awk|} + ch?,
wherew is the exact solution t@.1]) at time t= tx and c is a positive constant independent of h

Proof. We only need to consider the matiBDy, as the other results will follow in a similar
manner. By Remark 3.1 we hay¢PDy) = max{A : 2is an eigenvalue ofDyx + (PDy)")/2}.
By direct calculation we haveDy + (PDy)* = PDx + DxP = diag(Xy, ..., Xn), thus we only
need consider the eigenvalues of each block. To that ende&ve s

(Ui—ze + Ui,£)2/2h2, i-j=1

o Toug/M, i—j=0
(X0ij = (Uig + Ui1p) /202, i—j=-1
o, otherwise

By applying Gerschgorin’s circle theorem we have

|4 + 2ui /K|

IA

|(Uizse + Uie) /202] + |(Ui e + Uisre) /20
(Ui—1z + Uig) /20 + (Ui g + Uisrg) /202,

due to the positivity of the solution. Thus we have

Ai + ZUi,f/hZ < (Ui,l,g + Ui,f) /2h2 + (Ui’g + Ui+1,f) /2h2
Ui—1¢ — 2Ui¢ + Uip1e
hos 2he
- L som
2 (%i,Ye.t)
and by a similar argument
1
—=Zu +0(h? ) < A
(2 “ (%.ye-t) ( ) I

Combining the above results give€PDy) < max|Awy|/2} + ch?, wherec is a positive constant
independent olfi, which is the desired result. The other bounds follow sintylar O

Lemma 3.4. If (32) holds andw, € W?*(Q), for k > 0, wherew is the exact solution t@1)

at time t= ty, then we have
-1 -1
Tk Tk Tk
,|——ﬂ ,0——@
o-%# -3
7

=R
2

Xp

I
> +

| +

‘ ‘ ’ ‘

< 1+O(Tﬁ)



and

-1

I+T—2kPDk <1+0(7).

|37

Proof. First, we recall that undel {d) we have the [[0] Padé approximation

| + —RQH H - —PDk+1

” - _RDK+1

Tk Tk 2
|+EP_E(EP)+O(Tk), (3.3)
whereE(:) is the matrix exponential. Thus, taking the norm of bottesitl (33) gives

Tk

|+ Xp
2

HE +O(Tk

E (Ep(P)) +0 (Tk) < 1+ O(Tk),

= [=(3e

+0 (Tk)

IA

where we have appealed to the fact tAét negative definite. A similar argumentgi\.“em T—Z"R <
1+ O(rﬁ). Under [32) we have the [] Padé approximation
Tk -1 _ Tk 2
(| - EP) - E(EP)+O(Tk).
Tk -1 L . Tk -1
So, as above we obtajfil — EP) < 1+0(r}). A similar argument give (I - ER) <

1+ O(rﬁ). Lemma 3.3 gives thai(PDy), u(RD), u(PDy;1), u(RDe;1) < % max{|Aw|} + ch?,

and hence, similar arguments as above will give the remgimininds sincev, € W>*(Q). O

First we provide a proof of stability while freezing the nimgar source term and nonlinear
amplification matrices. This is equivalent to assuming thatsource term and amplification
matrices are constant.

Theorem 3.2. Assume that the nonlinear source term and the nonlinear ifingilon matrices
are frozen. If@31) holds, then the linearized scherf£2) is unconditionally stable in the von
Neumann sense, that is,

IZciall < clizoll, k>0,

wherezy = Vo — Vg is an initial error, z.1 = Vi1 — Yy IS the (k + 1)th perturbed error vector,
and c> Ois a constant independent of k and

Proof. Note that after rearranging.@ we have
Tk -1 Tk -1 T\ 1 T _\1
z1 = [1-=R | - =PD |- =R) (1-=P
Kt ( 2 D‘”) ( 2 k”) ( 2 ) ( 2 )

x(l +T—2kP)(I +T—2kR)(I +T—2kPDk)(I +T—2kRD<)zk. (3.4)



Taking the norm of both sides df.@ gives

Izl = ”(I - T—ZkRDm)_l(l - T—szDk+1)_l(| - T—ZkR)_l(I - EkP)_l
(l + T—sz)(l 3 R)(I + EPDk)(l + T—ZkRu()zk
L el ) )
'+5PH\'+§RHH'+§ (R [
< (L+ or) lzdl, (3.5)

wherecy is a positive constant independentfandh. We have also appealed to the bounds
from Lemma 3.4 in the last step. Now usihgqBwe have

Kk k
Zeall < @+oadlizd < [ [@+cmizll < [1+czn]||zou, (3.6)
i=0 i=0

wherecy, ¢y, ..., C, C are positive constants independentgfi = 0,...,k Since we are on a
k

finite time interval, say [OT] with T < oo, we may claim thag 7 < T. Thus, [36) becomes
i=0

k
llzdl < [1+CZTi]”ZOH < (1+CMlizoll < clizoll,
i=0

which gives the desired stability. O

In an dfort to show stability and convergence without freezing ahthe nonlinear terms,
we prove some lemmas which will provide useful bounds.

Lemma 3.5. Assume tha3.2) holds. Letwy be the exact solution t@1]) and letvg be the
solution to(Z2). If &, = v + t*(wk — V) for some t € (0, 1) then we have

IPD(EYIL, IRDEN < max{|Awil} + ch?,

where O¢,) = diag(£,) and c is a positive constant independent of h

Proof. We first considePD(£,). Note thatPD(&,) = diag(Xa, . . ., Xn), Where

(&i-ro)/ h22, i—j=1,

o _ ) 2@/, 1= =0,
iy = /P i-j=-1,
0, otherwise

Further, we hav@PD(&))|| < max [IXcll. So, by applying GerSchgorin’s circle theorem we may

.....

obtain the following relatlon fonX[||

U+ 2@ /M < |@E—uk/M + |G non/N.
9



Usingé&, = vk + t*(Wx — vi) and thatvy is nonnegative unde{B), we have

2[(1 - )Mk + T | (3= E) Vi + EWioa ok + (1 - ) (Visn i + t*(WiJrl,f)k.

A+ 2 2

(3.7)
We consider the two cases [D.p. First, we consider

2[(A - )ik + W] (L= E)M-vk + EWimnei+ (1= ) (Vien i+ U (Wira o)
i he = he

and after rearrangement we have

1 < h_lz [(1 =) (Vi) + T Wiz )k = 2[(1 = ) (Vi) + T (W] + (L= 1) (Visn o)k + " (Wi 0)x]

1-t t*
= e [(Vics.o)k = 2(Vi.0)k + (Visnok] + r [(Wi-1.0)k — 2(Wi. o)k + (Wis1,0)k]
- a-v) (WXX +0 (hz)) e (WXX ~o())
(%i.ye:t) (%.ye.t)
= Wiy +0(h?). (3.8)
(%Yt

We now consider the other case of the inequality froGd)(3

—[(L-t)Vir )k + T Wik + (1 = ) (Vigno)k + U (Wii1.0)k] i 2[(1 =) (Vi) + (Wi )]
h2 - h2

and by work similar to that used to obtain®R we obtain

- (WXX

Combining [(38) and [39) gives

+0 (h2)) <A (3.9)

(%Y. t)

+ ch?,

(%Y%)

[IXell < Wl

wherec is some positive constant independenhof hus, we have

IPDEIl < max [IXell < max{|(wxil} + ch?.

.....

Similar arguments give

IRD(EI < max{I(wiyy)il} + ch?,
and thus, combining the results, we have

IPD(&II, IRDEI < max{|Awgl} + ch?,

as desired. O

10



Lemma 3.6. Assume thafZ.2) holds. Letwy be the solution tdZ.1)) and letvk be the solution to
(22). If & = w + t" (Wi — v) for somet € (0, 1) then we have

IPD(REII < max{|A?wil} + ci?,

where ORé,) = diag(R&,) and c is a positive constant independent of h

Proof. This is shown in a similar fashion as the previous lemma anei®ved for brevity.
O

Theorem 3.3. Letr,, £ =0,1,...,k be syiciently small. If

Tk _ 1
h? 4maxl, max_1_ ne{(Vii ()i}

,,,,,

(3.10)

holds,w, € W*(Q), for k > 0, wherew is the true solution tqZT)), and||f(£)|| < K < o, for
£e RN, then the schem@2) is unconditionally stable in the von Neumann sense, that is,

wherezy = vp — Vg is an initial error, z,;1 = Vie1 — Ve 1 is the(k + 1)st perturbed error vector,
and¢ > Ois a constant independent of k and

Proof. Let vk be a solution andk be a perturbed solution t6.@). We first note that iffl(Z0)
holds, then we have the results which follow frdnjzholding. Let

[y _ T L - Tk T«
@_0 Zﬂo 2@ mdwk0+2ﬂ0+2@,

then we have

01 - PO (1 - FROMcD)Vier = i1 + PO (1 + FRD) v

2 ({ (Vi) + F W),
(3.11)

and

01 - 2P (1 - FRDWD) W1 = Wi (1 + FPDEY) (1 + FRO)

+ 2 (((Therd) + F(0),
(3.12)
Letting z« = vk — Vx and subtractind(32) from [311)), we have
i (9(Vier2) — I(Te) = i (M) — () + 5 ({(Vhar) = (Tea)) + 5 () = T@). (3.13)

where

9(vke2) = (1 = 3PP (1 = FROMD) Ve, ) = (1 + 3 PDW) (1 + HRDWA) v
11



Note that, forr, sufficiently small we havey(Vi.1) = g(Vi1) + Qu(€()Zks1 for some.ffi)l

L(Vis1; Vie1), Where L(Vie1; Vi) IS the line segment connecting,q to V.1 in RV, Similarly
we have thah(vi) = h(¥%) + hy(£?)z for somee® e L(vi; %). Note that this meang”, =
Va1 + ' (Vie1 — Vi) for somet* € (0,1) andg® = ¥y + s"(vi — ¥) for somes' € (0, 1). Thus,

(3I3) becomes
DED )z = ez + (V) ~ (Te) + 3 () ~ 1) (3.14)

Further, we havé(vy) = f(Vk) + f(£)z for someg(®) € L(vk; %). Thus, [319) becomes

7 T
lIIklﬂl"(‘f',’:(kZ))Zk + Eka(f(k:j.)l)ZkJrl + Ek fv(f(ks))zk

(\thv(f(kZ)) + T_zkfv(fﬁ:;))) Z

(Dkgv(fﬁ)l)zkﬂ

(20ue?) - ZE2) 21

and solving forz, 1 gives

-1
(e - F1ue) (vie+ 3 v(§<3>))zk

Ziy1

(gv(§k+1 ) 1(DE1 (' - T_zk (g"('f&)l )_1 (Dilfv(fﬁ)l )
x (T (E2) (l + T—z" (h(e®) e §<k3>)) Z. (3.15)

Taking the norm of both sides df.{@) gives

el = |(0E2) 0 (1 - X (o) o)

x (e®) (1 + 2 (he®) " we)) zkH

< [ty o1 - 3 (ate) o) |
<l @1+ % (ne®) ™ wittue®) 12
< 1+ oueno)(ove?, )* (u——(gv@@l ) o) |

x @1+ 5 () itue®)| (3.16)

by Lemma 3.4. We now show bounds Mgv(g&)l )_l“ and”hv(gl(f))u . By carefully considering
the matrix-vector product and thernfidirentiating, we observe that

1 0 Tk Tk
o€l = (1 ZPow)(i - ERD(V))V'V_f(l)
TSk+1
) 7 ) 7 )
I - TkPD(‘karl TkRD(karl + EPD(karl)RD(‘karl) + ZPD(R‘ka

(1 =7PPE) (1 - ROEL) + O, (8.17)



for 7 sufficiently small, where we have appealed to the fact nm(.ff(?l)u, IIRD(f(klfl)II < o0

by Lemma 3.5. anquD(R‘f(ki)l)Il < oo by Lemma 3.6, combined with our assumptions that
wi € W** for k > 0. Using [317) we have

(€)= (I = TkRD(E (1)) ™ (1 = 7PD(€ 1)) + O (Tﬁ)

and then

lov&) | = |0 - 7RDE )™ (1 = 1PDE ) + O (<)
|[E(PD(E ) E@RDE 1) + 0 ()

E(tiqt(PD(& ;1)) E(riit(RD(E 1)) + Cakti
1+ Co KTk, (3-18)

IA A

wherec,k, C4k are positive constants independenhofry, k, by similar arguments to that used
in Lemma 3.4. By similar arguments used to obt&id 73, we may obtain

hED) = (1 + nPDED)) (1 + RDED)) + O (7E)
and using similar arguments as those used to ottalil(3ve may obtain
[hvE@)|| < 1+ cakr (3.19)

wherecszy is a positive constant independentipfry, andk. Combining [316)-(319) we now
have

3
-1
lziall < ]_[(1+ci,krk) (I—T—Zk(g\,(fl(i)l) q;;lfv(ggl H H V§<2)) wilf, §<k3>))H||zk||
i=1
-1
< @ronm|(1- 5 (o) o) ”H v(f@) L) e

For 7 sufficiently small we have
£(% (o) o) + o ()
E(S (W) wihie) + o()
(1+ osrid) | E ([ oute2) | o vt + canc?

| ()| I el ) + erart
(1 osen B (%5 o)l @) i + s e

(1+cskri) |E (Tk— 2+ Cngk)) +Cg, ka] llzdl < (1+ cer) llzdll, (3.20)

lzeeall < (1 + Cskri)

X Nzl

IA

IA

IA

wherecik, i = 5,6,7,8,9, ¢« are positive constants independentofry, andk. Considering
(3:20), recursively, we have

k k
lzall < []@+am)lizoll < [1+C2Ti]llzoll < (1+CTlzol < izoll
i=0 i=0



wherec;, i = 0,...,k, C, €are constants independenttofr;, i = 0,...,k, and the stefx, and
k

7; < T < co. This gives the desired stability. O
i=0

Remark3.3. It should be noted that sined’ e L(vi; V), i = 1,2,3, then we have that any
matrices involvingg-‘g) will also satisfy [310), hence the positivity of our solution is ndtected
by the previous analysis. Further, Corollary 3.1 will apfaythe above.

In the above theorem, stability has been guaranteed withheezing any of the nonlinear
terms. We now show that the conditions used to ensure $tabile also sfficient to ensure
convergence. This current analysis is an improvement asnisiders the contributions of all
terms.

Theorem 3.4. Letr,, £ =0,1,...,k be syiciently small. If

Tk _ 1
h? 4maxl max_q__ne{(Vi)i, (Wi}

(3.21)

holds,w, € W*(Q), for k > 0, wherew is the true solution tqZ1)), and||f(£)|| < K < o, for
£ e RV, then(ZD) is convergent.

Proof. Letwy be the true solution tg (Z). Once again, we note thatif23) holds, then we have
the results which follow fron{(2) holding. Then, similar to Theorem 3.3, we have

01 = PDWi) ) (1 - FROWD) wir = Wi (1 + ZPDW) (1 -+ X RO wi
+H(flwa + 1 + O(x5) + O (),
(3.22)
whereD(wy) = diagfwvk). Letting ex = wy — vk and subtractind (2)) from (322), we have
Dy (9(Wki1) — 9(Vis1)) = Wi (W) — h(wi)) + O (73) + O (ch?), (3.23)

whereg and h are defined as in Theorem 3.3. Note that, fprsuficiently small we have
O(Wki1) = O(Vie1) + u(€ls)eea Tor someé(; € LWia;Viea), h(wi) = h(vid) + hu(E)ex
for someé? e L(wi; vi), andf(wi) = f(vie) + fu(€>)ex for somes® e L(wi; vi). Thus, [323)
becomes

_ _ -1
ser = (062) 0 (1 - (0ve) o) ()
x ( L+ 5 (nve?) \P;lfv(g‘f))) e +0(7f) + O (rd?) (3.24)

by similar arguments as those used in Theorem 3.3 to oljfdif)(3Taking the norm of both
sides of[[(324) gives

leweall < (1+ cri) llexll + Cowts + Cokrih?, (3.25)

wherecs x, Cok, Ck are positive constants indeJoendempfk, k, for 7 sufficiently small and we
have appealed to the fact tmﬁ’tD(f(ki)l)H, ||RD(§kl+)l)|| < oo by Lemma 3.5. anuIPD(Rg(klfl)H < o0
14



by Lemma 3.6, combined with our assumptions thate W** for k > 0. Considering[(23)
recursively gives

k

k Kk Kk
lewall < [ [@+cm)lieoll + > (w2 +mih?) < {1+CZTi]|Isoll+C (7 + ih?)

i=0 i=0 i=0 i=0

k k
< (1+CTlleol +C Y (7 +7ih?) < CZ(T?th), (3.26)
=0

i =0

k

whereC is a positive constant independentofr,, andk, Z 7i < T, and we have used the fact
i=0

thatgg = 0. Also note that

k

ir?grzi‘rig‘ﬁ and ZTih2=h2iTi5Th2’
i=0

i=0 i=0 i=0

where Orrl1a>§{ri} < 1. Therefore,
1=0,1,...,

Amylleall = m C(Tr +TH) =0
which ensures the anticipated convergence. O

4. Numerical Experiments

We provide numerical experiments that provide empiricad@wce which suggests our non-
linear operator splitting method is stable, convergerd,eficient. The first two examples focus
exclusively on simulations of(Z). The first example examines the numerical convergenee rat
and computationalfciency, in light of a known exact solution. The second exangxamines
the numerical solution in the case of no reactive term. Is lhiter case no theoretical solution
is known, however, the numerical solution satisfies our gyhestimates and converges at the
anticipated rate. In our last two examples, the numericadgaure is used to examine théeet
of self-diffusion on the nonlinear food chain modelnI{t(1.3).

The computations are carried out on a Mafigiatform and its parallel computing toolbox
on a HP EliteDesk 800 G1 work station with an IteCore(TM) i7-4770 3.40GHz processor
with 16 GB of RAM.

4.1. Nonlinear Model - Example 1
Consider[(20) with

f(xy,t) = —272 [(cosérx) sin(ry))? + (cosfry) sin(rx))? — 2 (sin(rx) sin(ny))z] exp(—4n2t)

This reactive term has been chosen so that an exact solattbe partial diferential equation is
known, that is,
u(x,y, t) = sin(rx) sin(ry) exp(-2r*t).
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Let ui(fj) be the numerical solution at = ih, y; = jh, and at timeT with r as the temporal size.
For a fixedh we have|ui(fj) — u| = C7P for which p is the order of accuracy that can be estimated

as
1 1
~_2N_Z]:

(T) u(x.,y,,T)|
.<T./2>
'»J

- U063, )|

1 . .
Leth =.01 and based o (B) lett = 510’4. LetT = 1. We estimate the approximate order of

p ~ 1.998841

This indicates that our nonlinear splitting algorithm isigerging at the anticipated second order
rate.

Since the exact solution decays exponentially the temsbeal is constant throughout the

. . . L 1
entire computation. Clearly, the maximum of the theorécdution occurs at%, 5). Hence,

we calculate the natural logarithm of the numerical and esalation over time at the maximum
location. Therefore, we expectto see a linear function wisfope of-272. In Figurdl(a) we see
that the numerical solution decays at nearly the identatalas the exact solution; the two curves
are virtually indistinguishable. We use a linear least segsito estimate the slope of the numerical
solution decay and determine a value-df9.7392088. In Figurgl1(b) the absolutdtdrence is
shown to aid in the comparison. Notice that the slofd of KBy — 19.7392088~ .006

@o_ (b), x 1073

~10.
—12|
_14|
~16, |
-18 I

6
5
4|
3
2

0 01020304 (2.5 060708091 °0 01020304 0506070809 1
t

Figure 1: The maximum value of the numerical and theoresohition both occur at the center of the doma).6).

(a) A plot of the natural logarithm afi(.5, .5, k) (blue) andusgsok (red) are shown. The slope is calculated through
a linear least squares and is approximateh9.7392088 which is close to the anticipated exponential decay rate of
—27% ~ —19.7392088. (b) An absolute filerence of the values shown in (a). The slope of tigedince of the logs

is .006. Tr;is shows strong agreement between the theoretichhamerical solutions. Parameters uséd= .01,
T=5x10".

We shall examine the computationallijfieiency of the algorithm as we increase the number
of unknowns N, that is, ash decreases in size. Let= 10" and consider the computational
time for 1000 temporal steps fof = 21,31,...,401. The computational time, in seconds, is
determine for increasindyl. Figure[2 shows a log-log plot of the computational time uers

16



N. A linear least squares approximation is used to deternhi@eliope of the line and is found
to be 1654628. Hence, the computational time scaledl&&%%2 which shows the proposed
nonlinear splitting method is computationalljieient.

103

Log of Elapsed Time (sec)

0 ‘ s

10’ 102 103

logN

Figure 2: A log-log plot of the computational time, in secendersusN after 1000 iterations. The temporal step is held
constantz = 107, while h = 1/(N — 1). A linear least squares approximates the slope of thetdile 1654628. This
indicates that the computational time is scalesN&§>46?8 The computational time of arfficient scheme should scale
no slower tharN?. This indicates that the proposed nonlinear splitting s@hes highly éficient.

4.2. Nonlinear Model - Example 2
Consider[(ZT) with f(x,y,t) = 0. Let

E@) = Ul = fﬂ U y, DA,

Multiplying (1) by u and integrating over the spatial domain yields, after usfiregdivergence
theorem,

E'(t) = ZfQ(u + U?)AudQ.

If we assume Dirichlet boundary conditions and then inteeglg parts, we obtain
f u?AudQ = -2 f ulvVul?dQ
Q

E'(t)+2 f [Vul?dQ < 0.
%7

Hence,



By the Poincaré inequality we have,

1
i < fg IVudQ
for a constan€. Therefore, )
E’(t) + =E(t) <0.
)+ EO <

Hence, we have an upper bound for the energy norm,firat is,
2
E(t) < exp(—at) E(0).

Leth = .01,7 = 10°, andT = 5. Let the initial condition bai(x,y,0) = sin(rx) sin(ry).
We determine the numerical solution and determine the gnsogm over the duration of the
computation. In FigurEl3 we plot the natural logarithm of rglyenorm and clearly see that the
numerical solution decays at a rate of approximatel®.7397958 This further validates the
effectiveness of the numerical approximation technique.

0

-20

-60

-80

-100

_'I 20 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 35 4 4.5 5

Figure 3: A plot of the natural logarithm of the energy nornvf y, t) throughout the duration of the computation. The
slope is determined to bel9.7397958 using a linear least squares approximation. Théeagvith the anticipated upper
bound and suggests a value® —.101318. The temporal step is held constant, 1076, while h = .01.

Consider the same initial condition and spatial step size.approximate the temporal con-
vergence rate in a similar fashion to the previous exampd,is,
(1) (t1)
] Uy = U
(t/2) _ (1)
wie —u

N

El

P~ inae.

=1



wherer = 510‘4 andui(fjf) is the numerical approximation using a fine temporal steg, siz=

10°*2. We find that
p ~ 1.994504

which is at the predicated second order convergence rate.

4.3. Three-Species Food Chain Model

The nonlinear food-chain model is approximated throughramnlinear operator splitting
scheme. Recall Eqs[I-1.3, namely,

2
r
A = dgAr + daAr? + cr? — ws
v+ D3
uv vr
v = hAV—av+w,; - W,
! u+ D, v+ D,
5 uv
ou = diAu+ agu — bou” —wy .
u+ Do

The partial dfferential equation for is determined through our nonlinear splitting scheme, evhil
the other partial dierential equations are determined through a second orderate Peaceman-
Rachford splitting schemE|[5]. For clarity, the numericalgedure is detailed here:

I_Tkp)’f(l) - (l+—(P+2R+2PDk+2RD<))rk+Tkhk’

( Ek )Vk+ 5 TkOk

—_ /: —_——~
|
A N[RN[R N

o)

~—
<1
e
|

| — P)ﬁ<1) = ( —" )Uk+ S7kfk
K\ & .
- ZR)F@ = O Ky
( 2 ) 2
Tk ) ~ 1
- E )Vk+1 = (l + —= > R)V(l) + Tkgk+1
T N 1
(| — Ek )Uk+1 = (| + = > R) (1) + 2kak+1
T ~ ~ T
(l - EkPDkH)rG) = - Py,

T = T 7
(I - EkRDﬁl)rkJrl = 7O - EkRDJk + Ek (hir = hi)

k ok k \T T k ok k \T
wherery = (1. r5. i) s vie= (M sy W) andu = (U s uly)

4.3.1. Example 3

As in the previous example, the convergence rate is estimatet u(x,y, 0) = v(x,y,0) =
r(x,y,O) = Sin(ﬂX)Sin(ﬂ'y), di=d, = d3 =h=ag=a=w; =W = W3 =1,Dg=D; =Dy =
D3 = 10, andc = .2. Leth = .01 andr is fixed at 10%. We determine the convergence rate,
is approximately 201871, 1991905, and 294640 for the numerical solutions farv, andr,
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respectively. This indicates the numerical solution isvemging at the anticipated second order
rate.

As in example 1, we estimate the computatiortatency by determining the computational
time to complete 1000 temporal steps fér= 21,31,...,401. The computational time, in
seconds, is determined for increasiNg It is determined that the computational time scales as
N3 which indicates our method is computationalfii@ent.

4.3.2. Example 4

Consider the case whety, = 0. The populatiomr may blow-up in finite time, that is,
. IiTm r(x,y,t) — co. Notice the cofficient onr? is c — ws/(v+ D). If v= 0 andc—ws/D3 < 0
— | <00

it is known thatr(x,y,t) will decay to zero. However, i # O then it has been shown that
may still blow-up in finite time even i€ — ws/D3 < 0 for Neumann boundary conditions [1]. In
the case of Dirichlet boundary conditions it has been cduajed that for a fixed parameter set
and initial conditions there will exists a critical for which Yc > ¢* the solution will blow-up
in finite time. We provide empirical evidence that suppolis tonjecture for the parameters
shown in Tabl€R. The initial conditions are

V(x,Y,0) =r(x,y,0) = 100 sin@X) sin(ty), u(x,y,0)=.1v(x,y,0)

Leth = .01 andrg = 5x 10°%. The minimum stepsize is set to be1® In the case ofl; = 0 the
critical ¢* ~ 5.07. Ford, = .025 thec” ~ 5.25. Hence, we see that fds # O the critical value of
c' is larger, due to the fact the nonlinearityr) further dampens the population growthrof

Table 2: List of parameters used in Example 4.

a; =50 a, =075 Wo = 0.55 w; = 1.0
wy = 0.25 wy =12 b, =0.5 Do = 20.0
D; =130 D, =10.0 D3 =200

d; =01 d, =01 dz; =01

5. Conclusions

In this paper a new adaptive nonlinear operator splittitngeste was developed and analyzed
to solve reaction diusion equations with a nonlinear selfffdision term. Under minimal cri-
teria we are able to shown convergence and stability of tbegeed method. The numerical
experiments further validate these results. The metholddéscmputationally gicient and ex-
periments suggest the computational time to completiolesdass thaiN?, which is the total
number of unknowns. Thefeciency of the algorithm is a notable accomplishment of thigt sy
design while the numerical analysis provides confidenclkeerutility of the numerical algorithm
in applications, in particular nonlinear food chain moddfsparticular, our examples indicated
that our method is computationallyfieient and accurate for a complicated and nonlinear food
chain models.
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