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ABSTRACT

Global warming is becoming an ever-important topic in the world today. In

1998, it was estimated that 40.5 % of U.S. anthropogenic CO2 emissions was

attributed to the combustion of fossil fuels during the generation of electricity

(U.S. Department of Energy 2000a). In an attempt to mitigate emissions, electric

utility companies have become interested in the potential of forests to sequester

large amounts of carbon in their above- and below-ground biomass as well as in

the soils. It has been estimated that if the world's deforested lands were

reforested and properly managed, they could have the potential to sequester five

billion megagrams of carbon per year (Kimmins 1997b). To effectively manage

forests to store carbon, it is important to study the role forest soils play in the

carbon sequestration process. These soils have the potential to store up to 59%

of the total carbon pool within a forest ecosystem (Birdsey 1992). This study

examined the biological potential of storing carbon in the soils and the economic

potential of storing carbon in the soils and trees grown on reclaimed lignite coal

minelands in East Texas. Results show that up to stand age 16, these mine soils

may be a net source of CO2 rather than a net sink because lignite carbon, which

is subject to microbial decomposition, exceeds modern organic carbon in the soil

up to this point.
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INTRODUCTION

International concerns about increasing levels of greenhouse gas emissions

and their impacts on climate change have led to the need for an understanding of

carbon sequestration in forest ecosystems. It is estimated that CO2 is 81 % of

total greenhouse gas (GHG) emissions in the U.S. (U.S. DOE 2000b). In 1992,

the United Nations Framework Convention on Climate Change called for a "non

binding" voluntary effort from the industrialized countries to reduce their

greenhouse gas emissions to 1990 levels by the year 2000. It became apparent

that most nations would fail to meet this goal, and negotiations were made under

the 1997 Kyoto Protocol in which the United States pledged to reduce its

emissions 7% below 1990 levels by 2012 (Fletcher 2000, Hawk 1999). Reducing

emissions would necessitate a large reduction in the use of fossil fuels. This may

have a negative effect on the economy. President Bush has determined that the

Kyoto Protocol is an unacceptable alternative and has called for new ideas to

reduce greenhouse gases. The electric utility industry has the opportunity to

respond to the administration by investigating new ways to capture and

sequester CO2 .

Atmospheric CO2 is the net result of emissions and uptake that occur through

natural processes and human activities. Future atmospheric CO2 concentrations

can be reduced not only through the reduction of emissions, but also by
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increasing the uptake by natural systems, known as carbon sinks. It has been

suggested by many scientists that the amount of CO2 released into the

atmosphere through natural processes is equal to the amount that is sequestered

by these natural processes. Anthropogenic additions of CO2 into the atmosphere

far exceed that which is currently being sequestered, or taken up, by natural

systems. It is estimated that natural processes on land and in the ocean absorb

about half of the emitted anthropogenic CO2, and that atmospheric

concentrations of CO2 are about 32% higher than they were 150 years ago

(Fletcher and Justus 2000).

The U.S. is currently producing 20 percent of the world's greenhouse gases

while it has only 4 percent of the human population. This is an estimated 1,511

million megagrams of carbon per year, mainly due to the combustion of fossil

fuels for energy (U.S. DOE 1999). Researchers have only recently begun to

address the need for atmospheric carbon removal and opportunities for

significant reductions still exist.

While carbon sequestration through the use of trees has been given a

thorough review, little is known on exactly how much carbon that soils can

sequester, and their role as a carbon sink is controversial. The potential of

forests to store large amounts of carbon lies not only in the above-ground

biomass of trees but also in below-ground biomass, as well as in the soils (U.S.

DOE 1999). Therefore, the U.S. Department of Energy has recognized forests

as being potential viable carbon sinks. In attempts to offset their emissions,
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electric utility companies have become interested in the potential of establishing

forests on their reclaimed coal mine sites to sequester carbon (Karpan 1999).

Therefore, the major objective of this study will be to determine the biological and

economic potential for storing carbon in the soils of loblolly pine (Pinus taeda L.)

plantations on reclaimed lignite coal minelands in east Texas.



OBJECTIVES

The objectives of this study are:

1) To compare the amount of carbon stored in soils of loblolly pine stands on

mined lignite coal land versus unmined land.

2) To determine the rate of carbon accrual in loblolly pine stands on mined

lignite coal land across a range of stand ages.

3) To determine whether stand density of loblolly pine trees affects the rate of

carbon sequestration in the soils of mined lignite coal land.

4) To determine how to manage the forest in order to maximize the financial

profitability of the timber and the carbon stored in the soils and in the trees on

lignite coal mined land.

4



LITERATURE REVIEW

Global Warming and Carbon Dioxide

It has been estimated that the Earth's average surface air temperature has

increased by about 0.9 0 F over the last 110 years due to increasing

concentrations of greenhouse gases (carbon dioxide (C02), methane (CH4 ),

nitrous oxide (N20), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and

sulphur hexafluoride (SF6)), especially that of carbon dioxide (Fletcher and

Justus 2000). For this reason, global warming is becoming an ever-growing

environmental issue in the world today. However, these gases do occur naturally

in our environment. These gases are responsible for trapping long wavelength

solar radiation, which helps to maintain a temperature level suitable for

sustaining life (Kimmins 1997b). Infrared (IR) active gases, such as water vapor,

carbon dioxide, and ozone, absorb thermal IR radiation emitted by the Earth's

surface and atmosphere (Ledley et al. 1999). Greenhouse gas concentrations

are increasing and have the potential to warm the earth's surface and lower

atmosphere above normal temperature levels.

It is predicted that by the middle of the 21 51 century, CO2 levels will double

current levels (Sedjo 1989). This rise is attributed primarily to emissions created

from the combustion of fossil fuels. Over the last 60 years, emissions from the

5
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combustion of fossil fuels have increased CO2 levels from 280 parts per million

(ppm) to over 365 ppm (U.S. Department of Energy 1999). Land-use

changes,such as forest land conversion, have also played a major role in

changes to global atmospheric carbon levels. Conversion of forest lands to

agriculture use results in as much as 50% loss of soil organic carbon (SOC) from

surface soils (20cm), contributing a much larger release of carbon than that of

forest harvests (±10%) (Johnson 1992, Post and Kwon 2000). A report by the

IPCC (1990) showed that tropical forest depletion releases 1.6 billion megagrams

of carbon annually. This has resulted in an increase of CO2 levels from 35 to 60

ppm. Many are beginning to realize the potential of forests beyond that of simply

agriculture use and timber production and have recognized their ability to

sequester carbon and act as mitigating agents to carbon emissions.

Forests and Carbon Storage

Forests occupy approximately one-third of the world's land area, and most of

the terrestrial organic C is stored within them (Richter et al. 1995). It is estimated

that 1 hectare (ha) of forestland contains on a global average between 100 and

200 megagrams (Mg) of carbon, while 1 ha of afforested land can sequester

carbon at rates of 5 to 10 megagrams of carbon per year (IPCC 1991). These
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potentials have allowed the U.S. Department of Energy (DOE) to recognize

forests as being viable sinks for carbon storage which could achieve their net

total sequestration goal of 1 billion Mg per year by 2025 and 4 billion Mg per year

by 2050 (U.S. DOE 1999).

Forests have the ability to store atmospheric carbon for long periods of

time.However, there appears to be a maximum amount of carbon that can be

stored in any particular type of forest (Kimmins 1997a). The total carbon in a

forest ecosystem increases until trees reach maturity, at which time total carbon

in this ecosystem will roughly be in equilibrium as old trees die and new trees

begin to grow (Plantinga et al. 1999). Old-growth forests often exhibit a period of

stagnation where growth is slowed down and carbon is no longer stored as

readily (Kimmins 1997a). This occurrence is infrequent though due to human

disturbances, fire, weather and insects, which return the carbon stored in these

natural ecosystems back to the atmosphere (Kimmins 1997a).

Although old-growth forests usually have a larger total carbon store than

younger forests, there is a potential for a greater release of carbon during and

after the harvesting of old-growth forests versus younger forests (Kimmins

1997a). If the harvested old-growth logs are used to produce long-lived products

versus disposable wood products, the carbon release accompanying timber

harvesting will be limited (Cannell 1996, Kimmins 1997a, Plantinga et al. 1999).

This is because the carbon that would have been released to the atmosphere

from disposable wood products will be captured in those long-lived products,
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therefore limiting the amount of carbon released into the atmosphere. Also, if an

old-growth forest is harvested and the land is immediately reforested and then

subsequently harvested for lumber, the old-growth carbon that was released into

the atmosphere through decomposition and manufacturing will be sequestered

again over the first rotation (Kimmins 1997a). With the potential of forests acting

as carbon sequestration sinks, it is important to focus on and study how these

sequestration rates are affected by differing forest management practices

(Sharpe and Johnson 1981).

Brown et al. (1996) has proposed three methods by which forest management

may be used to mitigate the rate of CO2 emissions into the atmosphere. These

three categories are management for carbon conservation, management for

carbon storage, and management for carbon substitution. The goal of carbon

conservation is to maintain current carbon pools in forest vegetation and soils by

reducing deforestation rates, protecting forests currently under conservation, and

using forests for sustainable timber production. Carbon storage management is

aimed at increasing the current carbon pool in existing forest vegetation and soil

through various silvicultural treatments, increasing carbon storage in durable

wood products, and using agroforestry to increase tree cover on cultivated lands.

Over the long term, management for carbon substitution has the greatest

mitigation potential. Substitution management is gained by extending the use of

forests for wood products and fuels through the establishment of new forests or

plantations and/or using silvicultural treatments to increase the growth of forests
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that have already been established (Brown et al. 1996, Moura-Costa and Stuart

1998). In time, the use of fossil fuels will be displaced either directly or indirectly

through the production of "Iow-energy-intensive" wood products (Brown et al.

1996). Over a fifty-five year period, it has been estimated on a global scale that

60 to 87 billion Mg of carbon could be sequestered and conserved at a cost of

$247 billion to $302 billion using the forest management techniques described

above (Brown et al. 1996).

Richter et al. (1995) conducted a study in South Carolina estimating the rate

of carbon accumulation over the first three decades of development in an old

field loblolly pine forest. These estimates included above- and below-ground

(biomass, forest floor, and mineral soil) carbon accrual. Also, carbon cycling in

relation to soil acidification down to a depth of 6 m was examined. It was found

that over a 34-year period, the total carbon accumulation in the ecosystem was

271.5 Mg/ha, of this, the total above- and below-ground biomass was 140.6

Mg/ha. Almost all of the carbon that accumulated in this stand was found in plant

biomass and in the forest floor. Carbon accumulation in the mineral soil was

96.0 Mg/ha, or 35% of the ecosystem total. About 80% of the carbon storage in

the soil was in the upper-half of the 6-m profile. It was found that, on average,

the ecosystem stored carbon at a rate of 5.16 Mg/ha/annum. Soil C inputs in the

surficial horizon (0.075m) can be as high as 3 Mg/ha/annum (Kinerson et aI.,

1977), but in this study it was found that over three decades only about 2 Mg/ha

of carbon accumulated. This was found to be a result of rapid turnover and
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decomposition rates in coarse textured surface soils (Richter et al. 1995). Also, it

was found that CO2 and carbonic acid increased with soil depth (Richter et al.

1995). Many authors have given the subject of carbon sequestration in forest

ecosystems a fairly thorough review, but little is known about the true potential of

carbon storage in soils.

Soils and Carbon Storage

On a global scale, approximately 1500-1600 x 1015 g of carbon are contained

within the soil organic matter (SOM) (Johnson and Henderson 1995). This

amount of carbon is more than what is contained in either vegetation (500-800 x

1015 g) or in the atmosphere (750 x 1015 g) (Johnson and Henderson 1995),

making soils as a carbon sink an important issue. Of importance is the "missing

sink" of carbon, which is the difference between CO2 released by fossil fuels

(approximately 6 x 1015g) and the annual increase of CO2 into the atmosphere

(approximately 3.4 x 1015g). While it is difficult to identify the missing sink, it has

been suggested that soils are a major global source or a sink for carbon

(Johnson and Henderson 1995).

One of the setbacks in determining total organic content in soils on lignite coal

minelands is that the composition of the lignite-rich mine spoil is different from

that of natural soils (Rumpel et aI.1998b). This is due to mining techniques that

do not allow for the separation of the overburden from small coal seams that may
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become incorporated into the overburden during the mining process. Therefore,

an unknown amount of carbon is contributed to the new soil by lignite. This

makes it difficult to determine the amount of carbon contributed from recent

additions from plant material (Rumpel et aI.1998b). Recent studies have been

completed by Rumpel et al. (1998a, 1998b, 1999,2000) in the Lusatian mining

district of the Federal Republic of Germany in which the organic matter

composition of lignite derived materials was analyzed. Under the assumption

that the soil samples contained recently formed soil organic matter from plant

litter and ancient organic carbon from lignite, Rumpel et al. (1998a, 1998b, 1999,

2000) determined the amount of carbon derived from lignite as a percentage of

total organic carbon. This was accomplished through radiocarbon dating using

the macro-technique of liquid scintillation as described by Becker-Heidmann et

al. (1988). It was concluded that lignite must be considered as a carbon source

due to its high carbon content and because of the potential for microbial

decomposition of the lignite (Rumpel 1998b).

It has been suggested that the sequestration of carbon in soils could

significantly decrease atmospheric CO2 (Schlesinger 1999). One problem in

evaluating carbon levels in soil is that most of the information available is for leaf

litters, which may only contribute a minor part (Agren et al. 1999). A 1977

experiment conducted in West Virginia found that soil organic carbon (SOC)

content in a strip-mined spoil was increased from 0.11 to 1.17% over a 4-year

period (Lal et al. 1998). A similar study observed an increase in SOC content by
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30g/kg after a 7-year reclamation period (Lal et al. 1998). Assuming that SOC is

not removed, added, or redistributed through soil movement, the rate of SOC

input and loss typically converge over time (MacDonald 1999). But because of

agricultural practices (burning, harvesting, plowing and tilling), the balance

between SOC inputs (plant and animal residues) and losses (decomposition) in

natural systems is usually disrupted (MacDonald 1999).

In a recent study by Johnson and Henderson (1995), the effects of harvesting

techniques and nitrogen fixers were examined to determine their effects on soil

carbon content. It was found that little change could be seen in soil carbon due

to harvesting. On the other hand, it was found that the presence of nitrogen

fixers almost always resulted in an increase in soil C and N (Johnson and

Henderson 1995). Rogers et al. (1999) discovered that in loblolly pine

plantations, with elevated CO2 levels in which supplemental nitrogen was

provided, there was a general increase in photosynthetic rates and growth rates.

Enhancing plant growth can lead to a greater delivery of carbon to the soil,

potentially increasing the amount of carbon stored within the soil.

Vogt et al. (1995) analyzed soil carbon data from 90 forested sites globally. It

was found that soil organic carbon was greatest in temperate forests, followed by

tropical forests. The lowest SOC occurred in boreal forests. The dominant tree

species present in each site were noted and, within each biome, it was found that

soil C levels were highest in those forests dominated by deciduous tree species.

But when looking at dominant tree species alone, soil C was highest in mixed
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species (deciduous and coniferous) forests as compared to those dominated by

deciduous or coniferous species alone.

Lal et al. (1995) suggests 3 ways of sequestering carbon in soils: (1) increase

total soil organic carbon content, especially within the sub-soil horizons, (2)

increase micro-aggregation, and (3) increase soil biodiversity. An increase in soil

organic carbon content can be achieved through soil, water, and vegetation

management (i.e., erosion control, water conservation, soil fertility management,

and increased biomass return to the soil). Growing vegetation with deep root

systems can enhance the soil organic carbon content of the sub-soil. Also,

carbon stored within the sub-soil is less susceptible to disturbance by wind and

soil erosion and cultural practices. An increase in micro-aggregation can be

achieved by (1) increasing soil biotic activity and (2) through the addition of

biomass and organic material to the soil. Increasing the total aggregation can

immobilize large quantities of carbon, making these micro-aggregates and clay

domains inaccessible to microorganisms. An increase in soil biodiversity can be

achieved through afforestation, soil fertilization, and cover crops. Not only does

the enhancement of soil biodiversity increase soil structure and aggregation, but

it also increases active carbon content in soils (Lal et al. 1995).

MacDonald et al. (1999) conducted a study on the effects of elevated soil

temperatures on C losses from a forested Spodosol. Soil samples were taken

from surface and subsurface horizons and were incubated at two seasonal

temperature regimes. One regime simulated those temperatures normal to
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northern lower Michigan and the other simulated soil temperatures representing

an amount of warming that might occur under global warming theory calculations.

It was found that increased soil warming resulted in higher microbial respiration

rates, which in turn resulted in increased cumulative C respired and greater

losses of carbon from the soil. The greatest carbon losses were present in the

surface soils (50 mg C g-1C) as compared to subsurface horizons (25 mg C g-1C).

Mineland Productivity and Carbon Storage

The combustion of fossil fuels has been the greatest contributor to the rise of

CO2 concentrations in the atmosphere. The United States is the largest

contributor of the world's fossil fuel emissions (Uzama 1991). Because of this,

utility companies in the United States, have become involved in the carbon

mitigating process. One approach is through the establishment and productivity

assessments of forests on their reclaimed minelands (Karpan 1999).

The establishment of forests on reclaimed minelands in some areas (mainly in

the west) have shown establishment costs as high as $1,000 per acre

(Finkenbinder 1999). Finkenbinder (1999) found that this contrasted with Texas

Utilities, which found that it is cheaper to plant trees than to establish

pasturelands. It was found that this discrepancy in the willingness of landowners

to plant trees has to do with a combination of state regulations, whether the land

is owned by the mining company or is leased, and the geography of the mine

(Finkenbinder 1999). Hawk (1999) performed an analysis on the different
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options and costs for reducing CO2 emissions in the power generation industry.

Hawk (1999) analyzed options ranging from fuel switching of coal to natural gas

in existing plants, producing new and improved plants to replace the older ones,

and sequestration achieved through forestation or technological sequestration

(i.e. deep ocean disposal). This study concluded that because forest carbon

sequestration allows for the continued use of utility companies' existing coal-fired

power plants, it is the lowest cost emission-reduction option. It reduces the need

for new plant construction and the use of more expensive fuels. Using forests to

meet the carbon reduction targets gives utility companies time to develop lower

cost and more efficient carbon management methods for meeting long-term

goals (Hawk 1999).

Results reported in a study by Bussler et al. (1984) determined the suitability

for reforestation on reconstructed mine soils in southwestern Indiana, according

to specifications of Public Law 95-87. It was found that the chemical properties

of mine soils were more favorable for plant growth than unmined reference soils,

while the physical properties such as rooting zones were less favorable for mine

soils versus unmined soils. It was concluded that methods of redistributing

topsoil to reduce the degradation of soil physical properties should be

investigated.

Willett (1978) conducted a study on unmined lands in northeastern Texas to

determine the effects of the A horizon on height growth of loblolly pine given soils

of similar parent materials but differing A horizon thickness. Age and height data
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for loblolly pine stands grown on Bowie, Fuquay, Sacul, and Troup soils were

gathered using stem analysis. Site index ratings at 50 years for Fuquay, Sacul,

and Troup soil series were 80 feet and for Bowie soils it was 83 feet. The depth

of surface soil effects tree growth but these soils have very different surface soil

thickness; yet their site indices are relatively constant. It was found that at 5,10,

15, 20, 25, and 30 years of age, stands on Bowie soil series had the greatest

heights on average. Those trees on Fuquay and Troup soils were intermediate

and those on Sacul soils were the shortest. It was determined that standard

loblolly pine site index curves based on index age 50 years overestimate site

index at young ages, causing the projected site index to be slightly less at each

successive 5 year interval from ages 15 to 30. However, a localized site index

table based on index age 25 years was more accurate and suitable for the

northeast Texas area. At all ages, height increased with an increase in fine

material content (silt-plus-clay) of the surface soil while it tended to decrease with

increased fine material in the subsoil. An increase in fine material improves

water holding capacity. Therefore, those soils with more fine material in the

subsoil horizons (i.e., Sacul series) often became waterlogged during the wet

season (Willett 1978).

Schroeder and Vining (1993) studied how compaction by heavy equipment

during mine reclamation affects soil physical parameters. With an increase in

bulk density and a decrease in porosity and pore size during compaction, it was

hypothesized that water infiltration and permeability would decrease and rooting
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depth would be restricted. It also was found that subsoil tillage treatments

applied prior to topsoil respreading did not successfully reduce bulk densities

because the subsoil materials were recompacted during topsoil respreading.

Finally, the study showed that there was an increase in subsoil bulk densities and

soil strength over time due to reconsolidation.

Soil compaction can also result in lower oxygen diffusion due to a reduction in

porosity (Hons 1978). It has been found that an increase in soil oxygen content

is beneficial to increased root production while a deficiency in soil oxygen levels

decreases root penetration. Therefore, adequate soil aeration and adequately

available soil oxygen will promote plant uptake of nutrients such as N, P, K, Ca,

and Mg (Hons 1978).

Another problem encountered on reclaimed minelands is the acidification of

soils caused by the oxidation of ferrous sulfides (pyrite and marcasite)

(McCallister 1981). When high amounts of acidity are produced, certain clays

and minerals are solubilized and release toxic amounts of iron, manganese, and

aluminum into the soil making it unsuitable for plant growth (Hans 1978). High

amounts of acidity can also produce direct toxicity to the roots of plants. A study

conducted by McCallister (1981) looked at the effects of acidity on the

exchangeable cation status of mine soil. It was found that the pH of older sites

was lower than those younger reclamation sites. This finding suggested that

more acid was produced due to the additional time of exposure. Both soils
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where found to have the lowest pH values at the surface where the zone of most

intense oxidation occurs.

A study conducted by Moss et al. (1989) showed how different reclamation

technfques affect productivity. This study evaluated, with respect to tree growth

and survival, the productivity of third-year height, diameter, volume, and survival

of pitch X loblolly pine (Pinus rigida Mill. X P. taeda L.) on amended mine soils in

Virginia. The treatments used were a control, topsoil only, sawdust plus a slow

release N source, and sewage sludge at 22, 56, 112, and 224 Mg/ha. The most

productive treatment was the sawdust plus a slow-release N source. After 3

years, this method yielded a height of 74.3 em, a diameter of 23.1 mm (at the

root collar), a volume of 192.4 cm3
, and 92% survival. The least productive

treatment was the sewage sludge at 224 Mg/ha. This treatment produced a

height of 50.2 em, a diameter of 10.0 mm, a volume of 18.5 cm3
, and a 10%

survival rate.

Kee (1984) conducted a study at the Martin Lake mine site in Panola County,

Texas. The objective of the study was to determine the effects of cover crop and

nitrogen (N) and phosphorus (P) fertilizer rates on loblolly pine growth and

survival when planted on mine spoils. It was found that those plots with cover

crops that competed greatly with trees for moisture and nutrients during periods

of drought had the lowest tree survival compared to those plots with cover crops

such as subterranean clover that did not compete with the trees. Overall, tree

survival was greatest in plots fertilized at 50 kg N/ha because those plots
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fertilized at higher rates (100 kg N/ha) had extreme competition with Coastal

bermudagrass. In those plots fertilized with P, needle nitrogen increased versus

those not fertilized with P. Tree height increases were greatest in those

arrowleaf clover and N fertilized plots, ryegrass plus N, and no cover plus N, due

to the N input from fertilization and legumes. Although these plots had the

greatest height increase, they had the lowest rate of tree survival because in

these plots the cover crops competed excessively with the trees for sunlight,

water, and nutrients.

Shupe (1986) determined the optimum amount of nitrogen and phosphorus

which promotes the maximum growth of loblolly pine on lignite mine spoils. The

study was conducted on a 7 ha, two-year old loblolly pine plantation at the Martin

Lake lignite mine in Texas. Nitrogen was applied at rates of 0, 56, 112, 224, and

448 kilograms per ha combined with phosphorus at rates of 0,28, and 84

kilograms per ha. It was found that height growth increased slightly in plots of

combined Nand P where the phosphorus level increased. Diameter growth

increased as height class increased across all levels of phosphorus application

rates. Overall, an increase in diameter growth and foliar nitrogen content was

found due to the application of nitrogen during the first year, and increased foliar

nitrogen during the second year. It was determined that although diameter

responses were significant due to the application of fertilizers, the growth was not

enough to justify fertilization expenses. Shupe stated that fertilizers added during

site preparation were sufficient to promote satisfactory loblolly pine growth, and
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the further addition of Nand P would not increase profits enough to justify their

application.

Hons (1978) studied the yield and reclamation potential of various grasses

and legumes on lignite mined spoil in Freestone County, Texas. The mixing of

the entire overburden in the mining process resulted in soils of intermediate

textures (silty clay loams and clay loams). The higher silt and clay content, as

compared to adjacent unmined sites, increased the moisture holding capacity of

the mined soils. Kleingrass and Coastal bermudagrass produced the highest

yield of the grasses and of the legume species, Yuchi arrowleaf clover produced

the highest yield. The use of N03' form of N fertilizer was more effective than

NH4+ -N in the production of grass. This form of N fertilizer (N03' -N) proved to be

most effective when applied during the establishment period (before dense root

systems were formed). Phosphorus was found to produce maximum grass and

legume yields when applied at rates less than 134 kg P/ha/yr and 224 kg P/ha/yr,

respectively.

Toups (1986) conducted a study comparing the average total height growth,

and soil physical and chemical properties for loblolly pine plantations on mined

and non-mined soils in East Texas. Although trees on both land types were

growing at increasing rates, the average total height for trees on the reclaimed

sites were significantly lower than the height growth on the unmined sites. Total

height and stem diameter for the reference sites averaged 267 cm and 6.1 cm,

respectively. The reclaimed sites showed an average total height of 178 cm and
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an average stem diameter of 4.7 em. Soil P, K, Ca, and Mg were all significantly

greater on the mined site versus the unmined site. The mined sites had the

advantage in terms of soil fertility due to the greater supply of plant available

macro- and micro-nutrients. It was determined that compaction and the

occasional deficiency of nitrogen and/or phosphorus may have caused the trees

on the mined site to grow slower. It was concluded that loblolly pine can be

grown successfully on reclaimed mine sites (Toups 1986, Wood 1985).

Carbon Credit Market

It is possible that in the future, the amount of CO2 that utility companies are

emitting and sequestering each year will be monitored by government agencies.

A tax may eventually be imposed on the amount of carbon emitted by utility

companies, which could increase utility bills for consumers by as much as 86%

by the year 2010 (DOE 1998). On the other hand, if these companies are able to

meet the DOE goal of sequestering carbon at $10 or less perton by 2015, utility

bills will increase by less than 1 cent per kilowatt hour (Environmental News

Network 2000). Since sequestering carbon in forests is currently the lowest cost

option, utility companies will either store carbon on reclaimed minelands or pay

landowners to store carbon for them. This transaction between companies and

private landowners will create what is known as a carbon credit market in which

"carbon credits" (1 ton of carbon=1 carbon credit) can be bought and sold on the

open market (Huang and Kronrad 2002).
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On the European market, carbon is currently being traded for $16 per ton of C

and is expected to triple. In the U.S., companies are already putting a shadow

price of $17 per ton of carbon emitted (Totten 1999). Utility companies are

beginning to take part in this growing market, in which the demand for 1 billion

tons of carbon per year is currently being created (Totten 1999).



JUSTIFICATION

Global warming concerns are increasing and this is mainly due to the release

of carbon dioxide caused by the combustion of fossil fuels. In an attempt to

mitigate this problem, utility companies have begun to look at the carbon

sequestration potential of forests on their reclaimed mined sites. In order to

quantify carbon sequestration rates, utility companies must determine how

productive these lands are. The purpose of this study is to quantify the amounts

of carbon in the soil and conduct financial analyses to determine the optimal

management regime that should be employed to maximize the financial return

from timber and from the carbon sequestered in the soil and trees. By doing this,

the possible potential of carbon sequestration on mined lands can be evaluated.

23



METHODS

Study Area

The study area contained loblolly pine plantations located on the reclaimed

mined lands at Martin Lake Mine, near Beckville, Texas. In addition, samples

were also collected from nearby pine stands, on unmined land, with soils similar

to those that existed on the pre-mined sites.

All samples from the loblolly pine plantations were collected at the same time

and from the same plots used by Jason D. Morton (2002). Morton determined

the impacts of stand densities on carbon sequestration rates in the trees.

Morton's data was used in this study to determine whether stand density affects

the rate of carbon sequestration in the soils on mined sites.

Litter Layer and Mineral Soil Sampling

In all, 11 stands were sampled (litter layer and mineral soil) using the point

sampling cruising method. At each plot on which Morton gathered tree density

information, three samples were collected from the litter layer (organic surface

horizon) using a 0.0625 m2 (625 cm2
) microplot. Overall, approximately 194 litter

layer samples were collected. For each of the samples, the microplot was placed

on the ground at a point located in a random direction, 3 meters from plot center.

24
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All of the organic surface horizon material contained within the microplot was

collected and taken to the lab for analysis.

Next, three samples were collected from the mineral soil (0 to 30 em), using a

sharp shooter, at the same location on which litter layer samples were taken.

Approximately 194 mineral soil samples were collected. These samples were

then taken to the laboratory and analyzed for carbon content with a Leco carbon

nitrogen analyzer.

Litter layer and mineral soil samples were collected across a range of sites:

1) Two sites that were recently mined but had not been planted with

grasses. In order to determine how much lignite carbon was present in

samples immediately after mining, data from recently mined sites was

needed. The assumption is that on sites recently mined (time 0), there

should be no carbon from recent additions (modern organic C). This

data was used to check this assumption through radiocarbon dating.

2) Two sites that had been recently planted with grasses. In order to

determine how much carbon was present in the soils before pine trees

were planted, data was collected from sites that had been recently

planted with grasses.

3) Eleven sites that had been reclaimed as loblolly pine plantations. Data

on these soils were collected from plantations on reclaimed mineland

of different ages, site indices, and stand densities. Mineral soil and
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organic surface horizon samples were collected from a stand of loblolly

pine planted in each year between 1983 and 1990.

4) One, fully occupied, unmined loblolly pine plantation that was

established in 1988 on existing native soils located at Martin Lake.

These samples were used to show a graphic representation of where

carbon from an unmined site falls in relation to that on the mined sites.

Litter Layer Analysis

MacDonald (1999) suggests the following steps in order to determine the

carbon content within the organic surface horizon:

(1) The whole sample collected from the microplot was oven-dried at 70 0 e

and weighed to determine dry biomass.

(2) A subsample was weighed and ashed in a muffle furnace at 525°e using

the Loss on Ignition (LOI) procedure.

(3) After complete combustion of all organic material the subsample was re

weighed.

(4) The loss in mass from combustion provided an estimate of organic matter

content.

(5) By assuming that half the organic matter present is representative of

organic carbon, the following equation was used: (percent organic matter

/2) = percent organic carbon.
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Mineral Soil Analysis

During the mining process at Martin Lake Mine, the topsoil is not set aside and

then replaced before planting trees. Instead the topsoil is mixed in with the

overburden and placed back onto the pit before tree planting. During the mining

process there are "rider" seams, containing thin layers of coal, which are brought

to the surface and become incorporated into the overburden. One of the

problems encountered in determining actual organic carbon on these sites, is

that lignite is not distinguished from organic carbon in soil testing procedures.

Therefore, organic carbon would be grossly overestimated if carbon from lignite

is not taken into account. Soil samples were gathered from the Beckville mine

site and the following steps were performed on each sample:

(1) The samples gathered from the Beckville mine site were dried and

ground.

(2) From the ground samples, 0.25 grams of soil were analyzed using the

Leco carbon-nitrogen analyzer.

(3) Of the 194 soil samples, 20 soil samples were chosen and sent to the

Radiocarbon Laboratory at the University of Arizona in Tucson. These

samples were analyzed using carbon-14 dating. The 20 samples

comprised of, 2 samples from each stand ages 12 to 19 (16 total), 2

samples from bare sites that had recently been mined but not

reclaimed and 2 samples from sites planted with grasses.
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Carbon-14 Dating

Radiocarbon dating (carbon-14 dating) was used to determine the amount of

carbon in the soil from recent additions and the amount of carbon in the soil from

lignite. Lignite is composed of carbon that is devoid of carbon-14 activity, making

it possible to use C14 dating to determine lignite C as a percentage of total

organic carbon (Rumpel et al. 1999). The following equation was developed by

Rumpel et al. (1998a) and was used in this study to determine lignite C, using

radiocarbon results:

f(x)=1-exp (-(tr-t) x In2fT)

where, tr= C14 age (determined by radiocarbon dating)

t= C14 age of soil= 0

T=Libby half-life of C14= 5,730 years

Due to the expense of carbon-14 dating, a small sample size (2 samples per

stand age) was sent to the radiocarbon lab. To compensate for this small

sample size, the results of radiocarbon dating were used to create a correction

factor to correct all 183 data points. Each stand age had a different correction

factor. First, using total organic carbon (obtained from the Leco carbon-nitrogen

analyzer) and lignite carbon (obtained from C14 dating and Rumpel's equation),

an equation was used to determine the percent of total carbon that was modern.

%Total organic carbon - %Lignite carbon 01 fIb h' d
-----=----------'''-------- = -/00 tota car on t at IS rno ern

%Total organic carbon
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This equation was used for each of the 2 samples at all stand ages, and the 2

samples were then averaged at each stand age. The average of the 2 samples

was the percent that total organic carbon was reduced by to obtain modern

organic carbon. Then, by subtracting the average percent of total carbon that is

modern from 1, the percent of total organic carbon that is from lignite was

obtained. In order for this correction factor to be used, the assumption had to be

made that at the time of mining, lignite was evenly distributed throughout the

overburden.

Data Analysis

Total organic carbon storage was calculated by adding the modern organic

carbon content of the soil horizon to the carbon content of lignite. Bulk density

data was determined to allow for conversion of the C data from a percent by

weight basis to weight per hectare basis. Soils data gathered from unmined

adjacent stands and mined stands was used to graphically serve as a baseline

comparison of how much carbon would have been stored in the soils had the site

not been mined and how much carbon the mined site actually stores. To

determine the rate of soil carbon accrual over time, soil carbon was measured on

sites being prepared for planting and on plantations of different ages. The affect

of stand density, site index, and stand age on carbon sequestration was

determined by measuring soil carbon in stands of different planting densities, site

indices and stand ages.
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Statistical Analysis

The independent variables in this project are stand age (time), planting

density, and site index, while the dependent variables are total organic carbon in

the soil, modern organic C, and lignite C. These independent and dependent

variables were statistically analyzed using multiple regression. Using Student

Newman-Keuls test (SNK), significant differences in mean carbon at the 0.05

level were determined. Regressions were developed for each of the following:

modern organic carbon, litter carbon (L.C.), lignite carbon, and total organic

carbon (lignite carbon + modern organic carbon). All results are reported using a

95% confidence interval.

The relationship between carbon accrual on mined versus unmined land was

presented graphically but not statistically. A single variable regression model

was formed for total organic carbon versus time on mined land, and a line was

plotted along the y-axis representing total organic carbon on unmined land. This

line provides an indicator of where total organic carbon on unmined lands falls in

relation to that on mined lands.

To determine modern soil carbon (excluding lignite), a correction factor

was applied to all of the data using the results from carbon-14 dating. Each

stand age has a different correction factor. The 183 observations were multiplied

by the correction factor corresponding to the stand age associated with that

point. A graphic representation was used to look at data gathered from carbon-
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14 dating. These numbers were plotted on two graphs, each representing

modern and lignite soil carbon in order to compare the amount of carbon

contributed from recent organic inputs versus ancient organic carbon (lignite

carbon).

Economic Analysis

Under the assumption that carbon is a tradable commodity, the

question to be answered was how to manage the forest in order to maximize the

value of the timber and the carbon stored in the trees and in the soil. A true

economic analysis could not be carried out because the statistical data did not

prove to be significant. Therefore, based on the data that was gathered, some

observations were made about the potential for earning money through carbon

storage on the Martin Lake minelands in Beckville, TX.



RESULTS AND DISCUSSION

Carbon Storage on Mined Verses Unmined

The first objective of this study was to determine and compare the amounts of

carbon stored in the soils of mined sites versus the soils of unmined sites (Figure

1). The soils gathered from stand ages 12 to 19 and those gathered from the

unmined site were used to address this objective. Significant differences in total

organic C in the soils were found between stand ages 12 to 19 (Table 1). Total

organic C storage, including lignite, decreased with increasing stand age (Figure

1). While the regression model is significant (Table 2, and 3), only 4.7% (r

square) of the variability in total carbon storage is explained by stand age (Figure

1). This model does not represent the normal pattern exhibited by soil carbon, as

stand age increases, in a loblolly pine plantation. Mining practices specific to

Martin Lake Mine in Beckville, TX, allow for thin layers of coal to be incorporated

into the replaced overburden. The additional carbon from lignite incorporated in

the mining process caused total organic soil C to be higher in these plantations.

Total organic C in the unmined site is lower than the predicted values for

organic carbon in the mined sites (Figure 1) and is slightly higher than mean total

organic carbon at stand age 19. Commonly, between stand ages 15 to 20 in

unmined loblolly pine stands, the rate of litter accretion begins to approach the

32
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Table 1. Mean total organic carbon in the soil to a depth of 30cm for stand ages
12 to 19 in mined sites and in an unmined forest.

Stand age Mean total organic carbon s n
(Mg ha'1)*

12 75.5a 22.0 12
13 49.7b 39.2 30
14 50.5c 31.3 18
15 114.8d 34.5 12
16 28.8e 21.6 39
17 49.8f 17.4 15
18 50.2g 35.0 45
19 19.5h 6.8 12

Unmined 21.3 2.2 9

*Means followed by a common letter are not significantly different at a. ~ 0.05
level using Student-Newman-Keuls test.
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Table 2. Regression statistics for predicting total organic carbon in the soil from
various stand ages (12 to 19 years).

Intercept
Stand age

Coefficients
107.81

-3.70

Standard error
19.64

1.24

t-statistic
5.49

-3.00

p-value
0.0001
0.0031

Table 3. Analysis of variance for total organic carbon in the soil under various
stand ages (12 to 19 years).

Source
Regression
Error

Degrees of freedom
1

181

Mean square
11,497.77
1,278.91

F
8.99

Pr> F
0.0031
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rate of litter decomposition (Switzer and Nelson, 1972). At stand age 19, the

mined site is probably approaching this point of equilibrium. This is why mean

organic carbon at stand age 19 is approaching mean organic carbon in the

unmined site, which has-already reached the point at where inputs equal

decomposition.

Significant differences were found in mean organic carbon in the litter layer at

all stand ages except for 13 and 16 (Table 4), and the regression model is

significant (Table 5 and Table 6).

Carbon Accrual on Mined Sites

The second objective of this study was to determine the rate of carbon accrual

in the soil of mined sites in stands ages 12 to 19. Two different scenarios were

looked at in this objective: (1) total carbon storage, including lignite; and (2) total

carbon storage, separating lignite carbon and modern carbon.

Radiocarbon dating produced results showing that the percent of total organic

carbon, in stand ages 12 to 19, attributed to lignite ranges from 0% and 83% or 0

Mg ha-1 to 106 Mg ha-1
, respectively (Table 7). Also, it was observed that at

stand age 0 (recently mined site with no grasses), total C from lignite ranged

from 134.7 Mg/ha to 35.7 Mg/ha (Table 7). These soil samples were taken from

the same site, which shows that there was high variability in the amount of lignite

mixed into the overburden on minelands. Once correction factors were applied

to the original data (Table 8), it was found that modern organic C increased with
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Table 4. Mean organic carbon in the litter layer for stand ages 12 to 19 in mined
sites and in an unmined forest.

Stand age Mean organic carbon s n
(Mg ha-1)*

12 3.6b 1.1 12
13 3.2a 1.3 30
14 3.9c 0.8 18
15 5.3d 1.8 12
16 3.3a 1.1 39
17 6.4e 2.7 15
18 4.6f 2.2 45
19 4.9g 2.5 12
Unmined 4.0 0.5 9

*Means followed by a common letter are not significantly different at a ~ 0.05
level using Student-Newman-Keuls test.
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Table 5. Regression statistics for predicting organic carbon in the litter layer from
stand age (12 to 19 years).

Intercept
Stand age

Coefficients
0.22
0.25

Standard error
1.04
0.07

t-statistic
0.22
3.83

p-value
0.8293
0.0002

Table 6. Analysis of variance for organic carbon in the litter layer under various
stand ages (12 to 19 years).

Source
Regression
Error

Degrees of freedom
1

181

Mean square
52.13

3.55

F
14.68

Pr> F
0.0002
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Table 7. Modern and lignite carbon contributions to total carbon in the soil (depth
0-30 cm), which were determined by carbon-14 measurements.

Stand age Total carbon Modern carbon Lignite carbon Modern carbon Lignite carbon
(years) (Mg ha'1) (% of total) (% of total) (Mg ha'1) (Mg ha'1)
0 136.6 1.4 98.6 1.9 134.7

37.9 5.8 94.2 2.2 35.7
12 115.2 39.2 60.8 45.1 70.1

71.4 18.6 81.4 13.3 58.1
13 80.2 17.3 82.7 13.9 66.3

43.6 46.8 53.2 20.4 23.2
14 72.3 34.0 66.0 24.5 47.8

36.2 79.8 20.2 28.9 7.3
15 94.8 34.9 65.1 33.1 61.7

148.6 28.4 71.6 42.2 106.4
16 52.1 56.2 43.8 29.3 22.8

34.6 75.6 24.4 26.1 8.5
17 65.3 52.6 47.4 34.4 30.9

55.7 21.6 78.4 12.0 43.7
18 55.9 100.0 0.0 55.9 0.0

73.7 36.7 63.3 27.1 46.6
19 25.4 68.5 31.5 17.4 8.0

38.0 75.7 24.3 28.8 9.2



Table 8. Correction factors used to convert total organic carbon (including
lignite) to modern organic carbon (without lignite) at each stand age.

40

Stand age (years)
12
13
14
15
16
17
18
19

Correction Factor (%)
29
32
57
32
66
37
68
72
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increasing stand age (Figure 2). The predicted values for modern carbon

storage, excluding lignite carbon, do represent the normal pattern exhibited by

soil carbon in which carbon increases with increasing stand age. Significant

differences in mean modern organic C were not found between stand ages 15

and 18, and between stand ages 12,13,16,17, and 19 (Table 9). While the

overall regression is significant (Table 10, and 11), the intercept (modern carbon)

is not significantly different from zero (p=0.5892), and only 2.1 % (r-square) of the

variability in modern carbon storage is explained by stand age (Figure 2). Due to

the initial small sample size (20 samples) of soils sent to the radiocarbon lab, a

significant regression could not be created.

In addition to modern organic carbon, it was important to look at trends

exhibited by carbon from lignite. Significant differences in mean lignite carbon

were found between all stand ages except for ages 13 and 17 (Table 12). While

the overall regression is significant (Table 13, and 14), only 19% (r-square) of the

variability in lignite carbon is explained by stand age (Figure 3). This r-square is

slightly higher than that produced from modern organic C and stand age. The

higher r-square indicates that there is a stronger relationship in this model

between stand age and carbon from lignite than in the model with modern

organic carbon as the dependent variable. Total carbon from lignite is

decreasing with increasing stand age (Figure 3). This may indicate that soil

microbes are breaking down lignite in the soil, and releasing CO2 into the

atmosphere as it is broken down. This theory may be validated by an



Table 9. Mean modem organic carbon in the soil to a depth of 30cm for stand
ages 12 to 19 in mined sites and in an unmined forest.

Stand age Mean modern organic carbon s n
(Mg ha-1)*

12 21.8b 6.4 12
13 15.9b 12.6 30
14 28.7c 17.8 18
15 36.3a 10.9 12
16 19.0b 14.3 39
17 18.5b 6.5 15
18 34.3a 23.9 45
19 14.1b 4.9 12
Unmined 21.3 2.2 9

*Means followed by a common letter are not significantly different at a $ 0.05
level using Student-Newman-Keuls test.
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Table 10. Regression statistics for predicting modern organic carbon in the soil
from stand age (12 to 19 years).

Intercept
Stand age

Coefficients
5.22
1.20

Standard error
9.66
0.61

t-statistic
0.54
1.98

p-value
0.5892
0.0491

Table 11. Analysis of variance for modern organic carbon in the soil under
various stand ages (12 to 19 years).

Source
Regression
Error

Degrees of freedom
1

181

Mean square
1,212.29

309.02

F
3.92

Pr> F
0.0491



Table 12. Mean lignite carbon in the soils to a depth of 30 cm in stand ages 12
to 19.

45

Stand age

12
13
14
15
16
17
18
19

Mean lignite carbon
(Mg ha-1)*

53.7b
33.8a
21.8c
78.5d

9.8e
31.3a
15.9f
5.4g

s

15.60
26.63
13.50
23.59

7.38
10.97
11.08

1.89

n

12
30
18
12
39
15
45
12

*Means followed by a common letter are not significantly different at a ~ 0.05
level using Student-Newman-Keuls test.



46

Table 13. Regression statistics for predicting lignite carbon in the soil from stand
age (12to 19).

Intercept
Stand age

Coefficients
102.58

-4.91

Standard error
11.98

0.75

t-statistic
8.56

-6.51

p-value
0.0001
0.0001

Table 14. Analysis of variance for lignite carbon in the soil under various stand
ages (12 to 19).

Source
Regression
Error

Degrees of freedom
1

181

Mean sguare
20,176.97

475.71

F
42.41

Pr> F
0.0001
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unpublished study by Stapleton (2003), which showed higher than expected CO2

respiration rates in wetlands that also have been mined at Martin Lake Mine in

Beckville, TX. Soil respiration in plots sampled by Stapleton (2003) were as low

as 14.g CO2/m
2/day at wetland age 0 up to 34 g CO2/m

2/day at wetland age 18.

Carbon Storage - Effects of Stand Density, Site Index, and Stand Age

The third objective of this study was to determine whether stand density

affects carbon storage in the soils of mined sites. All of the models for this

objective were built using modern organic carbon. When planting density is the

only independent variable used, the overall is not significant (Table 15, and 16).

Using multiple linear regression, 8 stand ages (12 to 19), 3 site indices (50, 60,

and 70), and 2 planting densities (5X10 and 6X1 0) were used to build a

regression model. The overall regression is significant (p=0.0091) when the

independent variables planting density and site index are added to the original

independent variable stand age (Table 18). Even though planting density alone

was not significant, when added to the overall model, it became important in

explaining the variance in modern organic carbon. This indicates a correlation

between all three independent variables when trying to predict the dependent

variable modern organic carbon. No significant differences in mean modern

organic C were found between the two planting densities (Table 19). Significant

differences in mean modern organic carbon were found between the 3 site
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Table 15. Regression statistics for predicting modern organic carbon in the soil
from planting density (5X1 aand 6X1 0).

Intercept
Stand density

Coefficients
50.77
-0.03

Standard error
16.27
0.02

t-statistic
3.12
-1.64

p-value
0.0021
0.1026

Table 16. Analysis of variance for modern organic carbon in the soil under
various planting densities (5X1 aand 6X1 0).

Source
Regression
Error

Degrees of freedom
1

181

Mean square
837.62
311.09

F
2.69

Pr> F
0.1026



Table 17. Regression statistics for predicting modern organic carbon in the soil
from stand age (12 to 19 years), stand density (5X10 and 6X10), and site index
(50, 60 and 70).

Coefficients Standard error t-statistic p-value
Intercept 19.07 19.17 0.99 0.3211
Stand age 0.64 0.72 0.89 0.3745
Site index 0.43 0.22 1.95 0.0522
Stand density -0.04 0.02 -1.91 0.0574

Table 18. Analysis of variance for modern organic carbon in the soil under
various stand ages (12 to 19 years), stand densities (5X10 and 6X1 0), and site
indices (50, 60 and 70)."

50

Source
Regression
Error

Degrees of freedom
3

179

Mean square F
1,186.86 3.96

299.36

Pr> F
0.0091



Table 19. Mean modern organic carbon content in the soil under two planting
densities (5X1 0 and 6X10).

51

Planting density

5X10
6X10

Mean modern organic C
(Mg ha-1r

20.3a
25.3a

n
42

141

*Means followed by a common letter are not significantly different at a:OS; 0.05
level using Student-Newman-Keuls test.



Table 20. Mean modern organic carbon content in the soil under 3 site indices
(50, 60, and 70).
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Site index
50
60
70

Mean modern organic C
(Mg ha-1)*

24.9a
18.8b
34.9c

n
42
96
45

*Means followed by a common letter are not significantly different at a. ::; 0.05
level using Student-Newman-Keuls test.
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Table 21. Site index, stand density, stand size, and sample size for each stand
age sampled.

Planting Site index Stand size Sample size
Stand Age density (acres)
12 6X10 50 13 12
13 6X10 60 38 30
14 6X10 50 14 18
15 6X10 60 13 12
16 6X10 60 14 12

5X10 70 14 15
5X10 50 13 12

17 5X10 60 17 15
18 6X10 70 39 30

6X10 60 24 15
19 6X10 60 16 12



Table 22. Predicted values for lignite carbon in the soils to a depth of 30 cm in
stand ages 12 to 19.
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Stand age

12
13
14
15
16
17
18
19

Predicted lignite carbon
(Mg ha-1

)

43.7
38.8
33.9
29.0
24.1
19.2
14.3

9.4

Table 23. Predicted modern organic carbon in the soil to a depth of 30cm for
stand ages 12 to 19 in mined sites.

Stand age

12
13
14
15
16
17
18
19

Predicted modern organic carbon
(Mg ha-1

)

19.7
20.9
22.1
23.3
24.5
25.7
26.9
28.1
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indices (Table 20). While stand density did not appear to playa significant role in

carbon accrual, site index does have some effect on modern organic carbon

storage. While there was a slight decrease in the amount of mean modern

organic C at site index 60, this may be due to the uneven sample size for each

site index (Table 20). The site index, planting density, and size of the stand

sampled is presented in Table 21 for each stand age. There were more samples

for site index 60, which probably produced a more accurate estimate of modern

organic C. With that aside, there was still a larger gap between modern organic

C in site index 50 and site index 70, than that between site index 50 and 60. The

data suggests that poor sites generally store carbon more slowly than higher

sites (Table 20).

Economic Analysis

After analysis of the data, it was not feasible to do an economic analysis.

Significant regressions could not be built because of a small sample size due to

the high expense of radiocarbon dating. However, using data from this study and

Morton's (2003) study, some important observations were made. Morton

predicted tons of carbon sequestered per acre for one rotation, using TXU's

current management regime, with the PTAEDA2 program. PTAEDA2 is a forest

stand growth simulator used to predict stand growth and yield data. He found

that between 30.5 tons/acre of carbon at site index 50 (5X10 spacing) and 51.9

tons/acre (site index 70, 5X10 spacing) of carbon were stored over one rotation.
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At stand age 12, the predicted value for total carbon from lignite (Table 22)

stored in the soils was 43.7 Mg/ha (119 tons/acre). This lignite is a net source of

CO2 to the atmosphere as long as it is being broken down by microbes in the

soil. At stand age 15, the predicted value for total C from lignite (Table 22) is 29

Mg/ha (79 tons/acre), which is already over 2 times the amount of carbon

sequestered over one rotation in the lowest site index of 50 (30.5 tons/acre), and

approximately 20 tons/acre higher than the amount in the highest site index of 70

(58.2 tons/acre). While at stand age 15, carbon from lignite exceeds the carbon

stored in the trees over one rotation, it is beginning to approach the point where

modern organic carbon in the soil exceeds lignite carbon in the soil. At stand age

16, predicted lignite C (Table 22) is 24.1 Mg/ha (65.6 tons/acre). At this point,

predicted values for new organic inputs (Table 23) to the system (24.5 Mg/ha, or

66.7 tons/acre) exceed lignite carbon, making predicted modern organic C in the

soil a net sink rather than a source of C (Table 23). Also, radiocarbon results for

stand ages 12 to 19 support this conclusion (Table 7). From stand ages 12 to

15, the majority (9 out of 10) of the samples contained a higher percentage of

lignite than modern carbon (Table 7). While in stand ages 16 to 19, the majority

(8 out of 10) of the samples contained a higher percentage of modern carbon

than lignite carbon. It could be said that only after stand age 16, can TXU begin

to claim carbon credits from C stored in the soils.



CONCLUSION

Significant regressions could not be built due to a small sample size of

radiocarbon results, and the high variability in total organic carbon due to the

presence of lignite in the soil. The high variability in the amount of lignite mixed

into the overburden was seen in the radiocarbon results. Two samples, taken

from the same site, produced results indicating that between 134.7 Mg/ha and

35.7 Mg/ha of lignite was on one site. This high variability could explain why

using correction factors to correct all 183 samples produced low ~ values, and

this indicates that the assumption that lignite is evenly distributed in the

overburden is not correct. Significant differences in total organic carbon were

found among stand ages, while modern organic carbon exhibited no significant

differences. The correction factors used may have biased the modern organic C

data set because only one factor could be used to correct every data point in

each stand age. Mean lignite carbon appears to be decreasing as stand age

increases, suggesting that it is being broken down by soil microbes. No

significant differences were found in modern organic C between the two planting

densities, while significant differences were found between site indices. Mean

modern organic C was lower at site index 50 than it was at site index 70. This

suggests that a higher site index may lead to higher quantities of carbon stored.

Sites with higher site indices may exhibit soil properties that promote tree growth,
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and therefore contribute to a faster growth of biomass above and below-ground.

This leads us to the question at hand. Can TXU claim carbon credits for the

soils, or on the land in general, of reclaimed loblolly pine plantations? If it were

economically feasible to have all 184 samples analyzed by radiocarbon dating,

there would be a greater understanding of actual carbon accrual on these sites.

Since this cannot be done, the small sample size analyzed in this study will have

to suffice. According to the data gathered in this study, carbon from lignite at

stand age 16 is not completely broken down. While lignite has not completely

broken down by stand age 16, at this point in the stand, modern organic carbon

exceeds lignite carbon. The data suggests that up to stand age 16, the soil

should be considered as a net source of CO2 to the atmosphere and it is not until

after this point that the soils and the land in general may be considered as a sink.



FURTHER RESEARCH NEEDED

Future research on TXU loblolly pine plantations at Martin Lake Mine in

Beckville, TX, should cover a few areas. First, the current mining practices,

which allow for coal to be incorporated into the replaced overburden, should be

reconsidered. Second, determine if the profits that could be made from

sequestering carbon in these soils are greater than the cost of setting the

overburden aside and then replacing it before planting trees. At approximately

$250 per sample (183 samples =$45,750), the costs of radiocarbon dating for

this study alone may be too high to even consider taking credit for the carbon in

Martin Lake Mine soils. Even 184 samples may not be sufficient to understand

the rate of carbon sequestration in these soils.

A moving average sampling method could be used to estimate the number of

samples needed to determine modern organic carbon on these sites (Coble

2003). Knowing now the great degree of variability on these sites, this method

could be used to determine approximately how many soil samples should be

gathered at each stand age. The following steps should be carried out for each

stand age. First, take approximately 3 soil samples from a site and analyze them

using radiocarbon dating to determine modern organic carbon. Then, plot the

mean modern organic carbon of these 3 samples on a figure that should be
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labeled with the number of samples (n) on the x-axis and mean modern organic

carbon on the y-axis. Next, collect and analyze 4 additional samples, and plot

those on the same figure. Continue with this process until the mean value for

modern organic carbon begins to stabilize, and this will be the optimum number

of samples that should be gathered from that site. Once the number of samples

is decided upon, regression analysis should be used to analyze modern organic

carbon. It is also suggested that further research include analysis of these 4

scenarios at each stand age.

1) A low planting density (5X1 0) on a low site index (50).

2) A low planting density (5X1 0) on a higher site index (70).

3) A higher planting density (6X1 0 or 7X1 0) on a low site index (50).

4) A higher planting density (6X10 or 7X1 0) on a higher site index (50).

This would allow for studying the affect of densities and site indices across a

range from low to high.
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