Epistemology and Synthesis: Instrumental Neutron Activation Analysis and the Caddo Tradition

Robert Z. Selden Jr.
zselden@sfasu.edu

Follow this and additional works at: https://scholarworks.sfasu.edu/crhr

Part of the Applied Statistics Commons, Archaeological Anthropology Commons, Geochemistry Commons, Geographic Information Sciences Commons, Geology Commons, and the Multivariate Analysis Commons

Tell us how this article helped you.

Repository Citation
https://scholarworks.sfasu.edu/crhr/10

This Presentation is brought to you for free and open access by the Center for Regional Heritage Research at SFA ScholarWorks. It has been accepted for inclusion in CRHR: Archaeology by an authorized administrator of SFA ScholarWorks. For more information, please contact cdssscholarworks@sfasu.edu.
Epistemology and Synthesis: Instrumental Neutron Activation Analysis and the Caddo Tradition

Robert Z. Selden Jr.
Department of Anthropology, Texas A&M University and Center for Regional Heritage Research, Stephen F. Austin State University

INTRODUCTION

Holding true to the processual underpinning of the region, instrumental neutron activation analysis (INAA) has been employed within the context of ceramic studies focused upon the Caddo tradition since 1995 in an effort to generate probable zones of ceramic manufacture, use, and discard (Ferguson 2007; Pettit and Ferguson, 2010). This article provides (1) a general synthesis of the results of INAA endeavors in the Caddo region over the past 17 years, and (2) possible avenues for future research.

Thanks to significant assistance from several Caddo-centric archaeologists, the geochemical data from all previous Caddo INAA endeavors has been assembled, and is used as the basis for this endeavor. Those data employed in this research design include 1281 assays from 171 archaeological sites across the traditional Caddo landscape of southwest Arkansas, northeast Louisiana, east Texas, and southeast Oklahoma. Included within the current database are an additional 57 assays of Caddo ceramics recovered from 17 sites in Central Texas that fall beyond the geographic boundary of the Southern Caddo Area.

Within the context of his more recent analyses, Ferguson (2010:2) “began to question the utility of a compositional group structure that could not assign a large percentage of new samples and continued to remove previously assigned samples from the compositional groups in order to maintain statistical separation of the groups.” As a whole, the Caddo region ranks within the top three with regard to the number of INAA samples that have been analyzed (only surpassed by the Valley of Mexico and the Mentes region of the American Southwest), but due to the dominance of similar alluvial clays within the region it presents something of a statistical conundrum (Ferguson 2010b). In their recent report of 36 samples submitted for analyses from the 41CP408 site, Ferguson and Glasscock (Ferguson and Glasscock 2011:6) point out that—due to statistical overlap within the current database of Caddo INAA—determining potential locations of ceramic production has become increasingly difficult.

ABSTRACT

The statistical groupings illustrated below represent the current iteration of Caddo INAA compositional groups based upon the chemical composition of archaeological ceramics. For some time, a number of Caddo archaeologists have thought these results to be lacking. This poster symbolizes the first step toward a new interpretation of chemical composition groups, and the initial instance within which GIS has been employed as an analytical tool.

The calcium correction was applied to these 47 sherds in version 2.15.2 of R, using the script corrected = apply(INAA_all[,10:42],2, function(x)1000000*x/(1000000*(1+INAA_all$Ca)) after which those sherds were recombined with the bone and other-tempered sherds, and the log-10 of each element was calculated, adding a value of one to each sherd/element in the database, modifying all missing values that are now represented by a zero. Subsequently, the Genit-Ord G^*_statistic in ArcGIS 10 was employed to calculate a z-score for each log-10 value, illustrating the spatial distribution and z-score value for each element using the formula

\[G^*_j = \sum_1^n w_{ij} x_j - \frac{1}{n} \sum_1^n w_{ij} \sum_1^n x_j \times \sqrt{n - 1} \]

where \(x_j \) is the attribute value for feature \(j \), \(w_{ij} \) is the spatial weight between feature \(i \) and \(j \). \(n \) is equal to the total number of features and

\[S = \frac{\sum_1^n w_{ij} x_j - (\sum_1^n x_j)^2}{n} \]

The \(G^*_j \) statistic is a z-score so no further calculations are required.

Following the calculation of z-scores for each element, these data were then used to calculate the deterministic statistic of inverse distance weighted (IDW) for each element (S). The question answered by IDW analyses is “for the discrete features that are very close to each other or in the same location?” (Mitchell 2003:145). The resultant geographic for chromium affirms Ferguson’s (2007:15-16) assertion regarding an apparent gradient in the Sabine River drainage, an observation which might now be extended to all but the Red River drainage. This represents merely the first step toward understanding the complexity of geochemical attributes associated with Caddo ceramics, and will assist with discerning potential trade and exchange patterns across the traditional Caddo territory and abroad.

ACKNOWLEDGEMENTS

I would like to thank Dr. Timothy K. Pettit, Mr. Ross Field, and Ms. Linda Ellis for access to the geochemical results as well as letters and reports relating to their research focused on questions of Caddo ceramics.