Linking Instrumental Neutron Activation Analysis (INAA) with Geology in the Ancestral Caddo Region

Robert Z. Selden Jr.
zselden@sfasu.edu

Follow this and additional works at: https://scholarworks.sfasu.edu/crhr

Part of the Archaeological Anthropology Commons, Geochemistry Commons, Geology Commons, and the Multivariate Analysis Commons

Tell us how this article helped you.

Repository Citation
Selden, Robert Z. Jr., "Linking Instrumental Neutron Activation Analysis (INAA) with Geology in the Ancestral Caddo Region" (2014). CRHR: Archaeology. 11.
https://scholarworks.sfasu.edu/crhr/11

This Article is brought to you for free and open access by the Center for Regional Heritage Research at SFA ScholarWorks. It has been accepted for inclusion in CRHR: Archaeology by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.
INTRODUCTION
Ceramic provenance studies remain the basis of worldwide archaeological research concerned with reconstituting exchange networks, tracing migrations, and informing upon local and regional ceramic economy. Due to the vagaries of Texas geology, traditional geochemical techniques (instrumental neutron activation analysis in particular) have not achieved the degree of success in Texas as they have within other regions.

This poster deviates from MURR's current method of applying the calcium correction (see Steponaitis et al. 1996;599) to the whole of the Caddo INAA dataset (Ferguson 2007.4; 20106; Ferguson and Glasscock 2006.3; 2007.3; 2009.3; 2009.2d; 2010.3; 2012.3; Perttula and Ferguson 2010.111); and since the number of shell and bone-tempered sherds remains small, that process is found to be unwarranted due to the overwhelming majority of Caddo sherds being greg-tempered, and "such correction is unnecessary because the greg itself is made of clay, presumably the same clay that comprises the rest of the paste." (Steponaitis et al. 1996;599). Consequently, one must remain skeptical of shell or bone-tempered greg within the sherds, and the inclusion of ceramic petrography can assist in highlighting shell or bone-tempered greg in ceramic paste (particularly when petrography and INAA are conducted on the same sherds). While the standard suite of multivariate statistics are employed within this analysis, those are augmented with 3D graphs and geographic representations that illustrate the distribution of geochemical data across space.

RESULTS
Employing the Geologic Database of Texas via the Texas Natural Resources Information System as a proxy, these data were plotted atop several geologic maps, and it appears that the following elements (cesium [Cs], dysprosium [Dy], europium [Eu], hafnium [Hf], lanthanum [La], lutetium [Lu], tantalum [Ta], thorium [Th], neodymium [Nd], samarium [Sm], erbium [Er] and zinc [Zn])—all but Ti and Zn are lanthanides—correlate with a spatial division between the Wilcox Group to the northwest and the Claiborne Group to the southeast. In particular, it appears that Claiborne Group components to the southeast, including the Queen City Sand, the Weches Formation, and the Sparta Sand possess higher values for those nine elements than the silty and sandy clay of the Wilcox Group to the northwest.

The division of these data based upon real measures of geologic variability makes it possible to demarcate—a broad scale—between those sherds of local manufacture in the Claiborne Group, and those manufactured from clays within the Wilcox Group within classes that have minimal overlap. Interestingly, those sherds associated with 41Kh107—assigned atop the Weches Formation—can be manipulated to plot independently of these two groups, highlighting a high degree of local geochemical variability within the region.

ILLUSTRATING GEOGRAPHIC DISTRIBUTION
The Geo-Of-GIS® statistic in ArcGIS® was employed to calculate a z-score for each log-10 value, illustrating the spatial distribution and z-score values for each site (ESRI 2012).

Following the calculation of log-10 values for each element, these data were then used to calculate the determinate statistic of inverse distance weighted (IDW) in ArcGIS® for each element to better illustrate whether discrete geochemical signatures exist close to one another, or in the same location (Selden 2013; Figures A2-A5).

While initially an issue of sample size, deletion of neodymium (Nd) and cerium (Ce) from the dataset prior to analysis is not necessary. While comparisons to the original NIST sample used by Steponaitis et al. (1996) should still follow this method, when dealing with the MURR dataset, the contribution of these elements needs to be further explored and not disregarded on the basis of their absence from 22 sherds analysed at NIST (see Steponaitis et al. 1996).

CLAI BORNE GROUP
Looking only at those sherds found to be associated with the Claiborne Group, further segmentation can be achieved and point to the addition, perhaps in the form of temper or potentially from residue, of elements associated with the Weches and Sparta Sand formations. The concentration of Zn and Cs found in Caddo ceramic paste is toward the southeast of the site, but more research will be needed to highlight which of the Formations—Weches or Sparta Sand—is contributing the bulk of this dynamic. The inclusion of a petrographic study may help to refine these assignments, particularly of glassy-—commonly associated with the Weches Formation—or perhaps the different inclusions known to occur within the Sparta Sand Formation—fine to medium grained, light to brownish gray quartz sand—and the Queen City Sand Formation—fine grained, grayish orange to pink quartz sand—are included within that analysis.

WILCOX GROUP
In an effort to explore the possible provenance of ceramics determined to have been produced within the Wilcox Group, those sherds assigned to this cluster were further subdivided based upon elemental values associated with Zn, Nd and Cs. Again, petrographic analyses may assist in further clarifying these divisions. Geochemical trends associated with the Claiborne Sand Formation are a very fine to medium grained, medium gray, that washes to various shades of brown and red quartz sand with—potentially—ironstone inclusions. The unaided Wilcox Group is characterized by sandy and sandy clay with common ironstone inclusions that are various shades of gray.