2013

Flavonoids and 3-Arylcoumarin from Pterocarpus soyauxii (Abstract)

Zushang Su
National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University

Ping Wang
National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University

Wei Yuan
National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University

Shiyou Li
National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University

Follow this and additional works at: http://scholarworks.sfasu.edu/ncpc_articles
Part of the Pharmacology, Toxicology and Environmental Health Commons
Tell us how this article helped you.

Recommended Citation
Su, Zushang; Wang, Ping; Yuan, Wei; and Li, Shiyou, "Flavonoids and 3-Arylcoumarin from Pterocarpus soyauxii (Abstract)" (2013). NCPC Publications and Patents. Paper 8.
http://scholarworks.sfasu.edu/ncpc_articles/8

This Article is brought to you for free and open access by the National Center for Pharmaceutical Crops at SFA ScholarWorks. It has been accepted for inclusion in NCPC Publications and Patents by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.
Flavonoids and 3-Arylcoumarin from Pterocarpus soyauxii

Zushang Su, Ping Wang, Wei Yuan, Shiyou Li. National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University

Abstract

Phytochemical study on the constituents of the heartwood of Pterocarpus soyauxii led to the isolation of five new isoflavonoids and one new 3-arylcoumarin, pterosonins A–F (1–6), together with 17 known analogues, among which 8, 9, and 18 were reported as natural products for the first time. Structure elucidation was achieved by way of spectroscopic measurements as well as by comparison with literature data. Only Compound 6 showed potent cytotoxicity against human non-small cell lung cancer (A549), pancreatic cancer (Panc-28), and colon carcinoma (HCT-116) cells with GI50 values at 7.39, 25, and 19.17 µM, respectively; the other isolates showed no cytotoxicity against the above tested cell lines with GI50 values > 50 µM.