Cycloastragenol, a Triterpene Aglycone Derived from Radix astragali, Suppresses the Accumulation of Cytoplasmic Lipid Droplet in 3T3-L1 Adipocytes (Abstract)

Shifeng Wang
Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China

Chenxi Zhai
Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China

Qing Liu
Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China

Xing Wang
Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China

Zhenzhen Ren
Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China

Follow this and additional works at: https://scholarworks.sfasu.edu/ncpc_articles
Authors
Shifeng Wang, Chenxi Zhai, Qing Liu, Xing Wang, Zhenzhen Ren, Yuxin Zhang, Yanling Zhang, Qinghua Wu, Shengnan Sun, Shiyou Li, and Yanjiang Qiao

This article is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/ncpc_articles/7
Cycloastragenol, a triterpene aglycone derived from *Radix astragali*, suppresses the accumulation of cytoplasmic lipid droplet in 3T3-L1 adipocytes

Received 20 May 2014, Available online 2 June 2014

Wang S¹, Zhai C¹, Liu Q¹, Wang X¹, Ren Z¹, Zhang Y¹, Zhang Y¹, Wu Q², Sun S², Li S³, Qiao Y⁴. Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China

Cycloastragenol (CAG), a bioactive triterpenoid sapogenin isolated from the Chinese herbal medicine *Radix astragali*, was reported to promote the phosphorylation of extracellular signal-regulated protein kinase (ERK). Here we investigated the effect of CAG on adipogenesis. The image-based Nile red staining analyses revealed that CAG dose dependently reduced cytoplasmic lipid droplet in 3T3-L1 adipocytes with the IC₅₀ value of 13.0 μM. Meanwhile, cytotoxicity assay provided evidence that CAG was free of injury on HepG2 cells up to 60 μM. In addition, using calcium mobilization assay, we observed that CAG stimulated calcium influx in 3T3-L1 preadipocytes with a dose dependent trend, the EC₅₀ value was determined as 21.9 μM. There were proofs that elevated intracellular calcium played a vital role in suppressing adipocyte differentiation. The current findings demonstrated that CAG was a potential therapeutic candidate for alleviating obesity and hyperlipidemia.