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Now consider a paraxial ray parallel to the principal axis 

by pulling point P and the incident ray down close to V, keep-
ing the ray parallel to the principal axis. This brings the point 
Q down close to V  and forces d to become negligibly small. 
Additionally, the angles q1, q2 , a, and g become so small that 
we can use the small-angle approximation: tan q . sin q . q.  
The results of the small-angle approximation on Snell’s law, n1 
sin q1 = n2 sin q2, is n1q1 = n2q2 so that q1 = nq2.  Here n

n

n
= 2

1is the index of the sphere relative to the surrounding medium.  
Using Eq. (4) and replacing q2 with θ

n
1  in Eq. (3), we get, af-

ter a little rearranging,
	
(2 – 2n)a = (2 – n)g.	  			            (7)

Since d is essentially zero, the small-angle approximations to 
Eqs. (5) and (6) are

R
α = y

and
q

γ = y . Substitute these into 
Eq. (7), rearrange, and obtain
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But the initial ray was parallel to the principal axis, which 
makes this image distance q the focal length of our sphere, but 
changing q to f won’t make Eq. (8) look like Eq. (2).  For the 
lens equation

  
to work for thick lenses, the focal length f, the object dis-
tance p, and the image distance q for a thick lens must all 
be measured from their respective principal planes. For the 
special case of a sphere, the two principal planes coincide at 
the center of the sphere, and we can treat the sphere as if it 
were a thin lens by taking all measurements from the center 
of the sphere. In Eq. (8) we were measuring from the back 
vertex of our sphere, so to measure the focal length from the 
center of the sphere we need to add R to the right side of Eq. 
(8). Doing so we get

Physics in a Glitter Ball
Walter Trikosko, Stephen F. Austin State University, Nacogdoches, TX

Maui Toys’ Water Bouncer (Fig. 1) is a water-filled 
ball containing glitter. Buy one and put it on your 
desk and students can’t keep their hands off of it.

Pitch the ball in the air giving it a quick spin. When you catch 
it you will see a sparkling vortex. Twist the ball around differ-
ent ways and the angular momentum of the fluid keeps the 
axis of the glitter vortex fixed in one direction.

Let the glitter settle and place the ball under a lamp. Look 
at the light reflecting from the glitter on the bottom of the 
ball. Around the perimeter of the sphere you see the colors 
produced by chromatic aberration. Some of the light entering 
our sphere can be reflected from the water/air interface at the 
back side where no glitter is present. This light undergoes dis-
persion both entering and exiting the sphere. This dispersion 
combined with the internal reflection gives rise to rainbows 
and dew bows.1  If this occurs in the sky we “ooh and aah!” but 
if it occurs in a lens it is a nuisance and we call it an aberration, 
like some beautiful flowers are weeds if we don’t want them in 
our garden.

After all, the ball is a spherical lens, so let’s calculate the fo-
cal length. Taking into account that the sphere is a thick lens, 
the focal length is 
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For a sphere of radius R, R1 = R, R2 = –R, and the thickness 
of the lens d = 2R, so our thick lens equation gives us the 
focal length of a sphere as
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n
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−2 1( )
.

	
Put the index of refraction for water n = 4

3  into Eq. (2) and 
run the numbers and you get f = 2R.

Equation (1) and the equations for the location of the 
principal planes are derived in Introduction to Geometrical 
and Physical Optics by Joseph Morgan.2 The derivation for the 
focal length of a thick spherical lens is rather lengthy since, in 
general, the two faces of a thick lens have different radii and 
centers of curvature. You would think that the derivation of 
the focal length of a sphere, Eq. (2), should be easier since the 
front and back surfaces have the same center of curvature and 
radii. Let’s give it a try.

In Fig. 2 we have a sphere of index n2 in a medium of index 
n1. A ray parallel to the principal axis VVstrikes the sphere at 
point P at an angle of incidence q1 measured from the normal, 
and refracts at an angle  q2 measured from the same normal, 
passes through the sphere, and exits at point Q, crossing the 
principal axis a distance q beyond the back vertex V . Apply-
ing a little elementary geometry and trigonometry, we see
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The angle qcir is the angle of incidence for the ray parallel to 
the principal axis that refracts through the circumference of 
the bright circle. Again using n = 4

3
, Eq. (9) gives  

 
and a = 0.3668 rad. This means that the bright circle has an 
arc diameter of 0.734R.

Let the glitter settle to the bottom of the ball. Now drop the 
ball without spinning it. This may take a little practice. The 
way I do it is to rest the ball on the palm of my hand and ac-
celerate my hand downward with acceleration greater than g.  
When the ball hits the floor, the glitter produces a mushroom 
cloud. After the glitter settles, rotate the ball 90o about a hori-
zontal axis in about one second and watch the turbidity cur-
rent. Oops! That’s geology.

The glitter ball costs about the same as a good enchilada 
dinner, but lasts a whole lot longer.
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The focal length of our water sphere is f = 2R.  Hold the 
“lens” back under a desk lamp and form an image. The im-
age of the light bulb is more than R beyond the ball because 
the object distance isn’t infinite. Take the ball outside into the 
sunshine and focus the Sun on your hand. The image of the 
Sun is warm, not hot, and a distance R behind the ball. Water 
is a good infrared absorber. Measure the image distance. We 
didn’t take into account the index of refraction of the thick  
vinyl shell of the ball, so our calculation may be off slightly.

Hold the ball up toward the Sun and look at the bright 
circle of light formed on the inside concave surface of the 
ball as in Fig. 1. Notice the circumference of the circle of light 
is brighter than the rest of the circle. If you trace the rays 
through the sphere with a good CAD program like  
AutoSketch, you will obtain a drawing like Fig. 3. The bright 
ring is the intersection of the internal caustic with the surface 
of the sphere. All rays parallel to the principal axis outside this 
blue ray are refracted to the inside the circle of light.

In Chapter 8 of Fundamentals of Optics, Jenkins and 
White3 show an elegant graphical construction that uses 
Snell’s law and allows paraxial and oblique rays to be traced 
through a single lens or an entire optical system, exactly. A 
CAD program such as AutoSketch makes this process easy 
and accurate and will provide a student interested in optics 
many enjoyable hours of ray tracing.

To calculate the internal caustic, refer again to the geom-
etry in Fig. 2. From Eq. (3), a = 2q1 – q2. The blue ray in Fig. 3 
corresponds to a being a maximum. So use Snell’s law, sin q1 
= n sin q2 with n n

n
= 2

1

, set  d
d

α
θ1

0= , and get 
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Fig. 1. Circle of light, the caustic. Fig. 2. Ray tracing geometry. Fig. 3. Multiple rays forming the caustic.
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