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IMPACTS OF A MANURE COMPOSTING

PROGRAM ON STREAM WATER QUALITY

A. Bekele,  A. M. S. McFarland,  A. J. Whisenant

ABSTRACT. In February 2001, the Texas Commission on Environmental Quality (TCEQ) adopted a Total Maximum Daily Load
(TMDL) for soluble reactive phosphorus (SRP) along the North Bosque River. Within this TMDL, dairy waste application
fields were identified as the major nonpoint-source contribution of nutrients. In September 2000, a manure composting
program was initiated that resulted in about 500,000 metric tons of dairy manure being hauled to composting facilities and
exported from the watershed through December 2004. To evaluate the impact of the manure composting program on stream
water quality, storm event mean concentrations of nutrients and total suspended solids were compared before and after the
start of the program at seven stream sites representing a range of land uses and levels of participation in the program. Data
were analyzed as a “before/after” monitoring design using analysis of covariance (ANCOVA) with flow as the covariate and
Wilcoxon rank sum (WRS) procedures with flow-adjusted data because flow was positively correlated to concentration.
Although the manure composting program has only been in place about four years, water quality appeared to be improving
at sites with the highest levels of manure removed per cow and watershed area. At these sites, SRP concentrations decreased
from 19% to 23%. Significant decreases in SRP were not seen at stream sites with lower levels of manure hauled off,
normalized on a per area and cow basis, indicating that the level of participation in the manure composting program might
be a major determinant of the level of impact.

Keywords. Compost, Dairy waste, Manure, Phosphorus, TMDL, Water quality.

n February 2001, the Texas Commission on Environ-
mental Quality (TCEQ, formerly the Texas Natural Re-
source Conservation Commission) adopted a Total
Maximum Daily Load (TMDL) for soluble reactive

phosphorus (SRP) for segments 1226 and 1255 of the North
Bosque River (TNRCC, 2001; fig. 1). This TMDL and its as-
sociated implementation plan to improve water quality were
initiated in response to excessive algal growth associated
with elevated nutrient levels. Through environmental stud-
ies, SRP was identified as the nutrient controlling the growth
of algae (Kiesling et al., 2001).

To obtain desired reductions in algal growth, the TMDL goal
stipulates on average a 50% reduction in soluble P concentra-
tions and loadings along the North Bosque River (TNRCC,
2001). Within the TMDL process, dairy waste application fields
were identified as the major nonpoint-source contributor. The
headwaters of the North Bosque River are located almost
entirely within Erath County, the primary milk-producing
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county in Texas (USDA-AMS, 2004). As of October 2002, 78
dairies with more than 40,000 milking cows were active in the
North Bosque River watershed.

Dairy manure is generally disposed of through land
application.  While land application is a beneficial use of
manure nutrients, these nutrients can potentially be trans-
ported to streams via rainfall runoff. In September 2000, the
Texas State Soil and Water Conservation Board (TSSWCB)
initiated the Dairy Manure Export Support (DMES) project
to export dairy manure from the North Bosque River
watershed (TSSWCB, 2005). The DMES project provides
incentives to haulers to transport manure from dairies to
composting facilities in conjunction with TCEQ’s Com-
posted Manure Incentive Project (CMIP).

Through CMIP, TCEQ is responsible for providing
technical assistance to composters and ensuring that manure
is properly processed and contained at composting facilities
(TCEQ, 2005). Only manure hauled to composting facilities
participating  in CMIP is eligible for DMES hauling reim-
bursement. In turn, the compost can then be hauled to other
watersheds as a beneficial soil amendment. CMIP also
provides rebates to Texas state agencies that use manure
compost received through the DMES project. For example,
the Texas Department of Transportation (TxDOT) uses the
dairy manure compost for roadside revegetation projects.
Individual composting facilities are also developing markets
for compost as a beneficial amendment for gardening and
turfgrass production. Jointly, these two projects, DMES and
CMIP, comprise a comprehensive manure composting pro-
gram for the North Bosque River watershed. The goal of
these two projects is to reduce nutrient loading from
conventional land application practices through the reloca-
tion of manure outside the watershed.

I
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Figure 1. Classified stream segments within the Bosque River watershed.

Almost 50% of all dairies participated at some level in the
manure composting program, leading to the haul-off of about
500,000 metric tons of dairy manure from within the North
Bosque River watershed between November 2000 and
December 2004 according to the DMES project records. This
represents about 50% of the manure produced in that time
period, assuming that (1) a dairy cow produces 7.6 kg of solid
manure per day on a dry matter basis (ASAE Standards,
2005), (2) the manure has a moisture content of 50% when
transported to composting facilities (NRCS, 2003), and (3) an
average of 40,000 dairy cows were present in the watershed.

While the program has had a fairly large level of
participation  overall, it is not known whether improvements
in stream water quality will be readily observable. Several
factors determine the success of nutrient management
practices on stream water quality within a watershed. These
factors include management effectiveness (Meals, 1992;
Bottcher et al., 1995), land use type (Wang, 2001; Fisher et
al., 2000), chemical and hydrologic factors (Sharpley et al.,
1999; Moog and Whiting, 2002), farmer participation
(Meals, 1992), and the measurement scale (Gburek et al.,

2000; Dougherty et al., 2004; Harmel et al., 2004). In small
plot- or field-scale studies, most of these factors can be
controlled and results can be obtained within a short time
period. On the watershed scale, it is often difficult to control
these confounding factors, and changes in water quality
generally occur more gradually. Changes in water quality
associated with nonpoint-source contributions often lag
changes in land management because of residual impacts
from past management practices (Clausen et al., 1992;
Meals, 1992, 1996; Nikolaidis et al., 1998). The length of this
time lag can vary greatly, particularly with regard to P, based
on whether the soil itself is acting as a sink or source of P
(Sharpley, 1995; Sharpley and Rekolainen, 1997).

The question remaining is whether this large amount of
dairy manure that has been moved to composting facilities
rather than being land applied has resulted in measurable
improvements in water quality. The specific objectives of
this research were to determine if improvements in water
quality are occurring in the watershed and, if so, can these
improvements be associated with the haul-off of dairy
manure to composting facilities.
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Figure 2. Location of sampling sites and watersheds. Dairy locations are shown for reference.

MATERIALS AND METHODS
SITE CHARACTERISTICS

The North Bosque River watershed located in central
Texas extends about 180 river km (110 river miles) from
Stephenville to Lake Waco (fig. 1). Seven sampling sites
located in the upper portion of the North Bosque River
watershed above Iredell (GB025, GB040, IC020, NF020,
SC020, SF020, and SP020) were used in this study (fig. 2).

These headwater sampling sites were selected because
they represent the range of rural land uses within the
watershed (table 1) and have a fairly long monitoring history

(table 2). All sites were maintained and operated by the Texas
Institute for Applied Environmental Research (TIAER) at
Tarleton State University, under contract with the TSSWCB
as part of a Clean Water Act Section 319(h) Nonpoint-Source
Pollution Control Program project (TIAER, 2004). Because
monitoring was conducted under a variety of different
projects, the monitoring period varied between sites (table 2).
Generally, monitoring continued through December 2004,
except at site SF020. Monitoring at site SF020 was discontin-
ued in January 2003 at the request of the private landowner.
At sites IC020, SC020, and SP020, monitoring was sus−

Table 1. Estimated land use and watershed area above sampling sites (adapted from Adams et al., 2005).

Site

Wood and
Range

(%)
Pasture

(%)
Cropland

(%)

Dairy Waste
Application
Fields (%)

Urban
(%)

Other
(%)

Total
Area
(ha)

Estimated
Milking

Herd Size[a]

NF020[b] 29.7 14.2 3.3 52.6 0.1 0.1 800 1500
GB040 21.1 42.8 4.9 30.2 0.7 0.1 540 2100
GB025 29.5 13.5 0.6 55.9 0.5 0.0 660 2750
IC020 64.9 16.8 6.1 11.8 0.3 0.0 1,740 1650
SC020 68.7 9.4 1.4 20.0 0.1 0.4 1,900 420
SF020 96.4 2.4 0.8 0.2 0.1 0.1 850 0
SP020 82.6 12.0 5.2 0.0 0.1 0.1 1,560 0
[a] Estimated milking herd size represents the average from TCEQ annual inspection numbers for 2000 through 2004. When inspected numbers were not

available, an estimate was used assuming 70% of the permitted herd size, except at SC020. Within the watershed above SC020, all three dairies were
non-permitted facilities with less than 200 head. A maximum of 200 head was assumed for these three facilities with an estimated herd size of 140 head.

[b] About 8 ha (20 ac) or about 1% of the watershed area above NF020 is permitted for septic disposal and was classified with dairy waste application fields.
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Table 2. Monitoring period by sampling site.
Site Monitoring Period

NF020 1993 − 2004
GB040 1997 − 2004
GB025 1997 − 2004
IC020 1993 − 2004[a]

SC020 1993 − 2004[a]

SF020 1993 − 2003
SP020 1993 − 2004[a]

[a] Monitoring suspended March 1998 through May 2001.

pended from March 1998 through May 2001 due to changes
in monitoring priorities.

Streamflow at these small headwater sampling sites is
highly intermittent and generally associated with rainfall
runoff. These stream sites are often dry or pooled and not
flowing during the summer and early fall. These rural
watersheds do not have significant point-source contribu-
tions; thus, water quality impacts are primarily from
nonpoint sources, which generally vary with the degree of
intensive agriculture above each site (McFarland and Hauck,
1999). Of the seven sites, GB025 and NF020 have a relatively
high potential for impact from dairy waste application fields.
In contrast, SF020 and SP020 are dominated by range and
wood land and represent relatively unimpacted sites (table 1).
Sites GB040, IC020, and SC020 have moderate potential for
impact from dairy waste application. Pasture within these
watersheds consists primarily of coastal bermudagrass
(Cynodon dactylon (L.) Pers Coastal). Cropland is usually
double-cropped with sorghum (Sorghum bicolor) and winter
wheat (Triticum spp.). Dairy waste is generally applied to
pasture or cropland. Dairy application fields are represented
as a separate land use category based on information obtained
from dairy permits and dairy waste management plans on
record with the TCEQ as of May 2000.

Records obtained from the DMES project on manure
hauled to composting facilities were summarized by wa-
tershed above the sampling site and normalized based on the
number of cows and watershed area (fig. 3). The most manure
hauled per cow population and watershed area occurred
above sites NF020, GB040, and GB025 (fig. 3). It was
expected that the sampling sites with the greatest manure
export per cow and unit area would show the greatest
improvement in water quality, especially with respect to SRP.
Moderate impacts due to the manure composting program
were expected at site IC020 with a lower level of participa-
tion in the program on a per cow and area basis. At SC020,
SF020, and SP020, no impact was expected due to the manure
composting program. Although there are three dairies in the
watershed above site SC020 and one with waste application
fields in the watershed above site SF020, none of these dairies
had manure hauled to composting facilities. The watershed
area above site SP020 contains no dairy operations or waste
application fields, so no impact was expected from the
manure composting program.

DATA COLLECTION AND LABORATORY METHODS
The data collection in this study focused on nonpoint-

source nutrient contributions in storm events. Samples were
collected during each storm event using automated sampling
equipment consisting of an Isco 4230 or 3230 bubbler-type
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Figure 3. Manure hauled (Nov. 2000 to Dec. 2004) normalized by wa-
tershed area and average number of cows above the sampling sites. High,
Moderate, and None represent expected composting impact.

flowmeter and an Isco 3700 sampler. The Isco flowmeters
were programmed to record water level at 5 min intervals and
to initiate sample retrieval when a rise of 4 cm above the bub-
bler datum was registered. Once activated, the samplers re-
trieved 1 L samples generally using the following sampling
sequence: initial sample, three samples at 1 h intervals, four
samples at 2 h intervals, and all remaining samples at 6 h in-
tervals. Samples collected prior to June 1997 were generally
analyzed individually as collected. Due to cost and staffing
issues after June 1997, most storm samples were flow com-
posited (subsamples with volume proportional to the flow
volume were withdrawn and placed in a single bottle) on a
daily basis prior to laboratory analysis. Stage-discharge rela-
tionships were developed for each site from manual wading-
type flow measurements taken at various water level
conditions following USGS methods (Buchanan and Somers,
1969). Stage-discharge relationships for stages that per-
mitted safe wading were extrapolated using the cross-sec-
tional area and a least-squares relationship of average stream
velocity to the log of water level. Constituents were analyzed
using USEPA-approved methods (USEPA, 1983) with slight
modifications for the analysis of total P and TKN. Total P was
analyzed using colorimetric automated block digestion
method 365.4, and TKN was analyzed using colorimetric au-
tomated phenate method 351.2. Both total P and TKN meth-
ods were modified to use copper sulfate as the catalyst instead
of mercuric oxide. SRP was analyzed on sample filtrate (0.45
� membrane) using colorimetric ascorbic acid method 365.2.
Dissolved NO2-N+NO3-N was analyzed using colormetric
automated cadmium reduction method 353.2, and dissolved
NH3-N was analyzed using semi-automated colorimetry
method 350.1. TSS was analyzed as non-filterable residue us-
ing gravimetric method 160.2 with drying at 103°C to
105°C.

Laboratory method detection limits (MDLs) or left
censored data below which the laboratory is unable to
differentiate from zero were entered into the database as
one-half the MDL following recommendations by Gilliom
and Helsel (1986) and Ward et al. (1988). Values below the
MDL can cause problems with statistical evaluation, espe-
cially when detection limits change. In TIAER’s laboratory,
MDLs are updated about once every six months. In preparing
data sets for analysis, the maximum MDL was identified for
each site by constituent. For consistency, all values in the
database below half the maximum MDL were set equal to
half the maximum MDL.
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Data Set Construction
Event mean concentrations (EMCs) were calculated for

each storm event by accumulating the mass via rectangular
integration using a midpoint rule to associate concentration
with streamflow (Stein, 1977). The 5 min stage readings were
used as the minimum measurement interval and multiplied
by 300 s to obtain the flow for each 5 min interval. The flow
associated with each 5 min interval was multiplied by the
associated water quality concentration and summed across
the event to calculate total constituent loadings. Total
constituent loadings were divided by total storm volume to
calculate EMCs.

Preliminary analyses of the data at sites NF020, GB025,
GB040, and IC020, indicated that certain runoff events may
have been impacted by effluent discharges from dairy
retention control structures rather than solely from nonpoint-
source runoff. In most cases, this could not be verified.
However, to isolate the impact of the manure composting
program, it was important that such potential contributions
from other sources be removed. Consequently, a separate
data set was constructed, deleting data points suspected to be
impacted by effluent discharges. Data points were deleted if
they had uncharacteristically high NH3-N concentrations
(>5.0 mg/ L) because wastewater effluent from dairies is
typically associated with high ammonia values. This reduced
data set was then analyzed and compared to the full data set
including all storm events. Some differences were observed
in the results between the full and reduced data sets (Bekele
and McFarland, 2004a); therefore, only results from reduced
data set modified to remove the potential impact from
effluent discharges is presented.

STATISTICAL METHODS

Evaluation of changes in water quality due to the manure
composting program was based on detection of a step trend.
Step trend procedures are used in two cases (Helsel and
Hirsch, 1992). The first case is when the record being
analyzed is broken into two distinct periods with a relatively
long time gap between them. The other case is when a known
event likely to have resulted in a change in water quality
(e.g., the initiation of the manure composting project)
occurred at a specific time during the record. The record can,
thus, be divided into a “before” and “after” period. For our
data, records before the start of the manure composting
program (November 2000) were designated “before,” while
records after November 2000 were designated “after.” The
data were then analyzed as a “before/after” monitoring
design (Grabow et al., 1999; Smith, 2002) using the analysis
of covariance (ANCOVA) and the nonparametric Wilcoxon
rank sum (WRS) procedures (SAS, 2000).

In the ANCOVA, average streamflow for each event was
used as the covariate. The ANCOVA consists of multiple
steps determining the statistical significance (1) of the
regression equations relating streamflow and concentration
from the two monitoring periods, (2) of the equality of these
regression slopes, and (3) of the difference between the
intercepts of the regressions from the two monitoring periods
(Littell et al., 1996; NRCS, 1997). ANCOVA was performed
on the natural log-transformed data to satisfy the assumptions
of the homogeneity of variance and the homogeneity of
regression (Littell et al., 1996). Results from ANCOVA are
considered flow-adjusted since ANCOVA allows obtaining
estimates of differences among treatment level means (for

the before and after periods) that would occur if all the
concentrations have the same streamflow (Keppel, 1991).

In the WRS analysis, data were flow-adjusted prior to
analysis using locally weighted regression and smoothing
scatterplots (LOWESS) with a smoothing coefficient of 0.5
(Helsel and Hirsh, 1992; Bekele and McFarland, 2004b). The
residuals from LOWESS regression were then used in the
WRS test. This test is based on the assumption that if the
regressions represent the variability due to streamflow, then
a difference in the regression residuals could be attributed
directly to a difference due to the manure composting
program (Helsel and Hirsh, 1992).

Both parametric and nonparametric procedures were
implemented  because at one site (SC020) the assumptions
associated with the ANCOVA could not be fully met. In
addition, the application of both parametric and nonparamet-
ric methods on the same data set is considered useful because
it provides assurance in the interpretation of results (NRCS,
1997). A step trend confirmed by both analyses was judged
more meaningful than one indicated by only one test. All
statistical significance was judged at an � = 0.10 probability
level.

RESULTS AND DISCUSSION
WATER QUALITY BEFORE/AFTER RESULTS

To present an overview of the water quality at each site,
summary statistics for the original EMC data (unadjusted for
flow variations and without log transformation) from the two
monitoring periods are presented in table 3. For reference, the
sites are listed in order from highest to lowest expected
impact associated with the manure composting program, as
indicated in figure 3. These summary statistics should not be
used for statistical tests of differences in water quality at a site
between periods without flow adjustment because flow can
greatly influence concentrations (Helsel and Hirsh, 1992).
These summary statistics are included for general compari-
son of water quality and the impacts of land uses in the
watershed above each site (table 1). Both before and after
initiation of the manure composting program, sampling sites
with watershed areas containing a large percentage of land
area comprised of dairy waste application fields (GB025 and
NF020) consistently showed higher SRP and total P con-
centrations.  Whereas sampling sites with few or no dairies in
their watershed (SP020 and SF020) had the lowest SRP and
total P concentrations in storm events. The general pattern
shown for SRP and total P concentrations also occurred for
TKN and to a lesser degree for NH3-N, but not for
NO2-N+NO3-N or TSS (table 3). The highest average
NO2-N+NO3-N and TSS concentrations occurred at site
GB040. Site GB040 has a moderately high percentage of
dairy waste application fields in its watershed (30%), but it
also has a history of cows watering in the creek. The direct
impact from cows watering in the creek near GB040 is
probably a factor in the relatively high NO2-N+NO3-N and
TSS concentrations at this site.

Although the basic statistics have not been flow-adjusted,
median values of SRP generally decreased between the
“before” and “after” periods, except at GB025. As noted
previously, these changes in median EMCs should not be
used directly to indicate changes between the “before” and
“after” periods because of the confounding effect of flow
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Table 3. Storm event summary statistics without flow adjustment and without log
transformation before and after initiation of the manure composting program.

Site, and Expected
Composting Impact Attribute

Number
of Events Mean Median

Standard
Deviation

Before After Before After Before After Before After
NF020, High Flow (m3/s) 82 52 0.18 0.17 0.07 0.10 0.31 0.20

SRP (mg/L) 82 52 1.11 1.01 1.06 0.99 0.81 0.73
Total P (mg/L) 82 52 2.14 2.37 1.97 1.85 1.17 1.76
TSS (mg/L) 82 52 1261 960 619 434 2038 2097
NO2-N+NO3-N (mg/L) 82 52 5.78 6.10 4.73 3.83 4.57 5.00
NH3-N (mg/L) 82 52 0.53 0.39 0.24 0.19 0.75 0.48
TKN (mg/L) 82 52 1.35 1.20 1.05 0.94 1.19 0.87

GB040, High Flow (m3/s) 28 51 0.02 0.07 0.01 0.03 0.02 0.09
SRP (mg/L) 28 51 1.28 1.02 1.11 1.02 0.77 0.43
Total P (mg/L) 28 51 3.21 2.84 2.73 2.45 2.37 1.55
TSS (mg/L) 28 51 1100 2535 660 644 1302 6375
NO2-N+NO3-N (mg/L) 28 51 9.00 8.43 9.09 6.66 5.98 6.09
NH3-N (mg/L) 28 51 1.00 0.68 0.57 0.42 1.11 0.76
TKN (mg/L) 28 51 5.80 4.81 3.97 2.69 5.34 6.30

GB025, High Flow (m3/s) 38 45 0.01 0.06 0.00 0.02 0.02 0.09
SRP (mg/L) 38 45 1.21 1.51 0.94 1.42 0.83 1.05
Total P (mg/L) 38 45 3.94 3.39 3.17 3.40 2.50 1.34
TSS (mg/L) 37 45 3190 2303 1212 780 5004 3334
NO2-N+NO3-N (mg/L) 38 45 12.92 8.87 8.11 6.68 13.07 6.06
NH3-N (mg/L) 38 45 0.46 0.50 0.25 0.28 0.67 0.68
TKN (mg/L) 38 45 1.36 1.64 1.02 1.15 1.32 1.51

IC020, Moderate Flow (m3/s) 60 45 0.24 0.12 0.12 0.04 0.31 0.20
SRP (mg/L) 60 45 0.70 0.68 0.65 0.61 0.38 0.43
Total P (mg/L) 60 45 1.20 1.29 1.20 1.24 0.62 0.65
TSS (mg/L) 60 45 232 323 174 189 251 336
NO2-N+NO3-N (mg/L) 60 45 3.27 3.83 2.95 3.63 1.76 1.78
NH3-N (mg/L) 60 45 0.17 0.38 0.12 0.20 0.25 0.65
TKN (mg/L) 60 45 1.11 1.42 0.90 1.32 0.81 0.90

SC020, None Flow (m3/s) 52 40 0.26 0.13 0.19 0.02 0.31 0.32
SRP (mg/L) 52 40 0.15 0.19 0.14 0.13 0.12 0.18
Total P (mg/L) 52 40 0.35 0.52 0.34 0.39 0.20 0.43
TSS (mg/L) 52 40 112 208 64 106 142 312
NO2-N+NO3-N (mg/L) 52 40 1.37 1.98 1.37 1.67 0.64 1.42
NH3-N (mg/L) 52 40 0.15 0.16 0.10 0.10 0.14 0.16
TKN (mg/L) 52 40 0.42 0.60 0.39 0.41 0.21 0.51

SF020, None Flow (m3/s) 95 27 0.12 0.07 0.04 0.01 0.19 0.12
SRP (mg/L) 95 27 0.04 0.04 0.03 0.03 0.04 0.05
Total P (mg/L) 95 27 0.23 0.26 0.19 0.25 0.16 0.14
TSS (mg/L) 95 27 220 382 124 216 298 631
NO2-N+NO3-N (mg/L) 95 27 0.24 0.45 0.17 0.39 0.26 0.24
NH3-N (mg/L) 95 27 0.17 0.14 0.11 0.09 0.18 0.13
TKN (mg/L) 95 27 1.41 1.89 1.28 1.78 0.73 0.93

SP020, None Flow (m3/s) 61 53 0.35 0.12 0.09 0.01 0.72 0.25
SRP (mg/L) 61 53 0.04 0.02 0.02 0.01 0.05 0.04
Total P (mg/L) 61 53 0.14 0.14 0.11 0.10 0.09 0.10
TSS (mg/L) 61 53 56 75 16 20 84 132
NO2-N+NO3-N (mg/L) 61 53 0.68 0.68 0.53 0.42 0.44 0.48
NH3-N (mg/L) 61 53 0.09 0.03 0.06 0.03 0.09 0.03
TKN (mg/L) 61 53 0.10 0.09 0.05 0.04 0.12 0.09

variations on storm concentrations. Streamflow varied great-
ly between the two monitoring periods, as presented for
GB025 (fig. 4).

The significant effect of stream flow variation on
concentration can be seen by comparing results obtained
from data adjusted for flow (table 4) and data unadjusted for
flow (table 3). For example, a decrease in flow-adjusted
EMCs for mean SRP was indicated at GB025, while median
and mean EMCs for unadjusted data indicated an increase.

The three sites (NF020, GB040, and GB025) with a high
expected impact from the manure composting program based
on the amount of compost haul-off (fig. 3) experienced
significant decreases in SRP (table 4). No significant changes
in SRP concentrations were noted at site IC020, which was
moderately impacted by the manure composting program, or
at sites SC020 or SF020, with no influence from the manure
composting program. Of note, only the nonparametric WRS
test was used for data from site SC020, since the flow-
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Figure 4. Event mean flows at site GB025. Dashed vertical line divides monitoring into periods before and after initiation of the manure composting
program.

concentration relationship significantly changed during the
study period for this site, thus violating the assumption of
ANCOVA. In contrast, significant reductions in SRP were
observed at site SP020, a least impacted site with no dairies
in its watershed. It is suspected that improvements in labora-
tory precision for SRP concentrations played a role in the
detection of significant decreases in low storm SRP con-
centrations at SP020 (table 3). The laboratory met all applica-
ble quality assurance and control measures over the entire
study. However, beginning in 2003, new instrumentation was
implemented  in the lab for the analysis of SRP, causing a
demonstrated improvement in precision, particularly at low
concentrations.  Although this increase in laboratory preci-
sion is one possible factor in the decrease in SRP concentra-
tions at SP020, other differences, such as weather conditions
and land use patterns, between the two time periods cannot
be ruled out.

Regardless of the cause, the absolute decrease at SP020 was
much smaller than the absolute decreases noted at sites GB025,
GB040, and NF020 (table 5). To quantify differences between
the two time periods, the natural log transformed mean values
from the ANCOVA were back transformed into their original
units (table 5). At sites NF020, GB040, and GB025 where the
highest potential impact from the manure composting program
was expected, absolute decreases in EMCs of SRP ranged from
0.15 to 0.26 mg/L, while relative percent decreases varied from
19% to 23%. In contrast, SP020 showed an absolute decrease
in EMC of SRP of 0.006 mg/L, representing a relative decrease
of almost 29% during the time period of the manure composting
program. At site IC020, a site at which a moderate impact from
the manure composting program was expected, a potential but
nonsignificant increase in EMCs of SRP was noted. Sites SC020
and SF020, where no impact from the manure composting
program was expected, both showed a small but nonsignificant
decrease in EMCs of SRP.

Table 4. P-values from analysis of covariance (ANCOVA) and Wilcoxon rank sum (WRS) comparing event mean
concentrations before and after the start of the manure composting program. Up and down arrows

indicate significant (� = 0.10) increases and decreases, respectively, in storm water quality.

Site

Expected
Composting

Impact Analysis SRP Total P TSS
NO2-N

+NO3-N NH3-N TKN

NF020 High ANCOVA 0.125 0.981 ↓062.0 0.223 0.565 0.726

WRS ↓013.0 0.163 ↓047.0 ↓090.0 0.178 0.150

GB040 High ANCOVA ↓035.0 0.597 0.308 0.574 ↓066.0 0.440

WRS ↓009.0 ↓089.0 0.405 0.211 ↓059.0 ↓052.0

GB025 High ANCOVA 0.122 0.524 0.845 0.851 0.506 0.873

WRS ↓090.0 0.411 0.369 0.245 0.130 0.476

IC020 Moderate ANCOVA 0.404 ↑008.0 ↑000.0 ↑001.0 ↑000.0 ↑001.0

WRS 0.190 ↑002.0 ↑001.0 ↑000.0 ↑001.0 ↑001.0

SC020[a] None ANCOVA na na na na na na

WRS 0.294 ↑034.0 ↑017.0 0.176 0.441 ↑012.0

SF020 None ANCOVA 0.774 0.331 ↑031.0 ↑000.0 0.402 ↑056.0

WRS 0.136 0.153 ↑059.0 ↑001.0 0.135 0.123

SP020 None ANCOVA ↓060.0 0.152 ↑044.0 0.245 ↓000.0 0.192

WRS ↓016.0 0.124 ↑027.0 0.120 ↓000.0 0.333
[a] ANCOVA not performed for SC020 because the flow-concentration relationship significantly changed during the study period. Only the nonparametric

Wilcoxon rank sum test was used.
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Table 5. Estimated change (%) in flow-adjusted mean SRP concentrations
before and after the implementation of the manure composting program.

Site

Expected
Composting

Impact

SRP[a]

(mg/L) Absolute
Change
(mg/L)

Relative
Change
(%)[b]

Significance[c]

Before After ANCOVA WRS

NF020 High 0.80 0.65 −0.15 −18.6 ns *
GB040 High 1.13 0.87 −0.26 −23.4 * *
GB025 High 1.20 0.97 −0.23 −19.3 ns *
IC020 Moderate 0.54 0.61 +0.07 +12.3 ns ns
SC020[d] None 0.14 0.13 −0.01 −3.7 na ns
SF020 None 0.030 0.029 −0.001 −3.3 ns ns
SP020 None 0.021 0.015 −0.006 −28.6 * *
[a] Back transformed from natural log into original linear scale as SRP(Before) = ebefore and SRP(After) = eafter, where “before” and “after” represent corre-

sponding flow-adjusted means (on natural log scale) from ANCOVA, and e is the base of the natural logarithm (approx. 2.7183).
[b] Percent change on the linear scale was calculated as: {[SRP(After) − SRP(Before)] / SRP(Before)} × 100.
[c] Significant differences between the “before” and “after” concentrations are for ANCOVA and Wilcoxon rank sum tests, respectively: ns = non-signifi-

cant, * = significant at α = 0.10, and na = not applicable.
[d] Percent change for SC020 is presented for flow-unadjusted median values rather than for flow-adjusted values because the flow-concentration relation-

ship changed over the analysis period.

At GB025, significant differences in SRP were not
indicated between the two periods based on ANCOVA,
although a slight downward trend was indicated from the
WRS test (table 4). The flow-SRP relationship at site GB025
stayed fairly consistent during the “before” and “after”
periods, although the “after” regression line had a lower
intercept than the “before” regression line, indicating the
potential for minor, albeit not statistically significant,
changes in SRP concentrations (fig. 5a). The flow-SRP
concentration relationship for GB040 (fig. 5b) showed that
the reduction in SRP concentration during the manure

composting program was greater under higher flow condi-
tions. SRP concentrations at site NF020 decreased at lower
flow conditions but were similar at higher flow (fig. 5c).
These regressions may partly explain why the statistical
significance for a reduction in SRP concentration at NF020
was apparent only with the WRS test and not the ANCOVA
(table 4).

With regard to total P, there was no significant difference
in EMCs during the two time periods at sites NF020, GB025,
SF020, and SC020 (table 4), but a significant decrease was
indicated from the WRS test at GB040. Significant increases
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Figure 5. Relationship of event mean concentrations of SRP to average storm flow for sites (a) GB025, (b) GB040, and (c) NF020. Ln represents the
natural log of the data. Regressions shown are statistically significant (� = 0.10).
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in EMCs of total P and TSS concentrations were indicated at
sites IC020 and SC020. At sites NF020, GB025, and GB040,
which had a high dairy impact and high expected impact from
the manure composting program, the ratio of SRP to total P
on average decreased from 0.40 “before” to 0.34 “after” the
initiation of the program due to significant decrease in SRP
(table 4). At site IC020, a similar decrease in the SRP to total
P ratio was observed from about 0.58 “before” to 0.48 “after”
the initiation of the program. In this case, the decrease in the
SRP to total P ratio was due to an increase in particulate P as-
sociated with TSS. Generally, SRP makes up a larger propor-
tion of the total P in runoff from non-cultivated lands, such
as pastures and fields with reduced tillage, whereas particu-
late P is the major portion of the P transported in runoff from
cultivated land (Sharpley, 1995; Jarvie et al., 1998). It is spec-
ulated, but cannot be proven from the data available, that
changes in land use, such as an increase in cropland farming,
may be responsible for the increased concentrations in TP
and TSS indicated at sites SC020 and IC020.

While decreases in P constituents were expected with the
manure composting program, the expectation for changes in
N constituents were less certain. Although less manure was
applied to the land during the manure composting program,
it is likely that producers applied more commercial N to meet
crop needs. Data from Riesel, Texas, show that as less poultry
litter is applied, more commercial N is applied, which results
in more N readily available for runoff losses (Harmel et al.,
2004). The water quality results for NH3-N were mixed
(table 4). Ammonia decreased at sites GB040 and SP020 and
increased at site IC020. At site IC020, increases in EMCs of
NO2-N+NO3-N and TKN were apparent during the period
after the implementation of the manure composting program.
Similarly, site SF020 showed an increase in NO2-N+NO3-N,
TKN, and TSS.

The increases in NO2-N+NO3-N, TKN, and TSS at sites
IC020, SF020, and SP020 appeared to be directly related to
changes in the flow-concentration relationship between the
“before” and “after” periods (graphs not shown). At the same
flow level, higher concentrations occurred in storm events
during the period “after” than “before” the initiation of the
manure composting program. The reason for these differ-
ences in the concentration-flow relationships may have little
to do with the haul-off of manure, because both sites SF020
and SP020 contain very limited or no impact from dairy
operations based on land use (table 1). The watershed area
above site IC020 is also only moderately impacted by dairy
waste application (table 1). It is uncertain what other factors
may be causing these increases, although it is speculated that
changes in land use, such as an increase in cropland farming,
would increase concentrations of TSS and related constitu-
ents.

The observation of a significant decrease in SRP con-
centration at GB040 and a general decreasing SRP con-
centration (although not statistically significant) at other sites
involved in the manure composting program gives initial
indications that the program is working. Removing dairy
manure that would have been land applied reduces P inputs
to the land. Reduction in P inputs to the land, in turn, is
considered among the direct methods used to reduce P
concentration from water bodies (Bottcher et al., 1995).
However, in large-scale studies such as this, reductions in P
inputs may not directly translate into improvements in water
quality since there is no control on systematic variations in

source factors and transport processes of P in the watershed
(Gburek et al., 2000). Based on a review of the literature on
best management practice (BMP) effectiveness for P pollu-
tion control, Gitau et al. (2005) identify slopes, soils,
location, and study scale to be factors that influence BMP
effectiveness through their control on P source and landscape
P transport processes. According to Eckholm et al. (2000),
the effect of scale appears to be a more important control
factor for SRP than total P, TSS, or N. They reported
increased losses of SRP per unit area with increased
watershed area. The losses of total P, TSS, and N per unit area
did not depend on watershed size (Eckholm et al., 2000).

The lack of more significant improvements in water
quality, especially SRP concentration, following manure
removal from microwatersheds with a long-term history of
manure application was anticipated for two reasons. First,
although direct P inputs to the land were decreased with
implementation  of the manure composting program, in-
stream improvements generally lag improvements on the
land (Clausen et al., 1992; Meals, 1992, 1996; Nikolaidis et
al., 1998). Based on field monitoring data and mathematical
modeling, Nikolaidis et al. (1998) reported less than 1.5%
reduction in N export after three years following a 100%
reduction in fertilizer and manure input to agricultural land
in north-central Connecticut. They attributed the lack of
immediate  response in water quality to the non-linear
response of watersheds to implementation of land manage-
ment practices. Nikolaidis et al. (1998) offer two reasons for
non-linearity in watershed response: (1) inherent watershed
characteristics  and hydrochemical processes that delay
nutrient loading in response to rainfall runoff, and (2) land
use patterns and position of contributing sources within a
watershed. Phosphorus fits this non-linear response in that
residual SRP can be released from the land and from the
resuspension of sediments at elevated flows within the stream
system (Brannan et al., 2000). Therefore, the positive effect
of manure removal on water quality will be achieved only if
sufficient time is given for the nutrient and the hydrological
systems to respond, such that P sinks are no longer sources of
P to water bodies (Spooner et al., 1985; Sharpley and
Rekolainen,  1997).

The second reason more significant improvements in
water quality were not expected is because only a relatively
short time period of post-treatment monitoring data were
available for analysis (about four years). When only
short-term post-treatment monitoring data are available, it is
often difficult to observe significant improvements in water
quality, because the small change that may occur can easily
be masked by the high variability in the data. Hydrologic and
long-term weather variation account for a large part of the
variability in water quality data, thus confounding the
evaluation of changes in water quality with changes in
management  practices (Soranno et al., 1996; Bishop et al.,
2005). The “before” and “after” monitoring design is based
on the assumption that natural events (e.g., weather condi-
tions) have, on average, remained the same during the two
monitoring phases (Smith, 2002). However, historical pre-
cipitation data for Stephenville, Texas, show that precipita-
tion after the start of the manure composting program in
November 2000 was below average except in 2002 and 2004
(fig. 6). Before the start of the manure composting program,
most years showed precipitation well above the long-term
average. While rarely does a year represent “average” or
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Figure 6. Temporal variability of annual precipitation at Stephenville,
Texas. Data obtained from the National Weather Service.

normal precipitation conditions, it is expected with more
monitoring that conditions “after” the implementation of the
manure composting program will start to more closely re-
semble the conditions “before” the program began.

It has been suggested that loading concentration variabili-
ty is more closely correlated with hydrologic variation than
with changes in land treatment (Moog and Whiting, 2002).
Given that all variables other than land treatment are
constant, a paired watershed approach (Spooner et al., 1985;
Meals and Hopkins, 2002; Smith, 2002) and incorporation of
multiple covariates (flow, precipitation, rainfall intensity,
temperature,  antecedent moisture conditions, etc.) in data
analysis (McDowell and Sharpley, 2002; Bishop et al., 2005)
might alleviate this lack of control over hydrologic and
climatic variation. A paired watershed approach, however,
could not be used because the treatments were employed
(manure composting program) on a voluntary basis. Conse-
quently, the microwatersheds considered did not satisfy the
requirements of a paired watershed monitoring design.
Continued monitoring, however, should allow a more
representative  data set, ameliorating the impact of climatic
and hydrologic variation present in the four years currently
available for evaluation.

CONCLUSIONS
Despite only four years of post-implementation monitor-

ing, the manure composting program appears to be having an
impact on water quality in the North Bosque River.
Statistically  significant reductions (19% to 23%) in SRP
concentrations were observed at sites with the highest levels
of participation in the manure composting program. Current-
ly, the manure composting program is funded through August
2006. With the implementation of the North Bosque River
TMDL and with the national need for managing animal
byproducts, a variety of other programs are also targeting
nutrient runoff from application fields. Examples include the
requirement of nutrient management plans for concentrated
animal feeding operations (CAFO; Federal Register, 2002)
and EQIP incentives through NRCS for nutrient management
and manure transfer (NRCS, 2004). The USEPA CAFO rule,
passed in February 2003, and Texas CAFO rules under TCEQ
both require development and implementation of nutrient
management plans that consider N and P (TCEQ, 2004).
Responsibilities stemming from the North Bosque River
TMDL for SRP require that the TSSWCB take nutrient
management  planning a step further by aiding in the

development of comprehensive nutrient management plans
(CNMPs) and water quality management plans (WQMPs),
respectively, for permitted and unpermitted animal feeding
operations in the watershed (TCEQ and TSSWCB, 2002). A
CNMP targets not only animal waste application fields but
the entire production system to ensure that both agricultural
production goals and natural resource concerns dealing with
nutrient and organic byproducts are addressed.

While the nutrient management activities under the
CAFO rule and EQIP programs do not necessarily lead to the
removal of manure from the watershed, they should better
direct utilization of manure on the land, leading to decreased
nutrient runoff. A complicating factor, which will be difficult
to assess, is the cumulative impact of manure application as
more land in the watershed is used for dairy waste
application.  With these multiple programs in the watershed,
it will also become more difficult to isolate the impact of the
manure composting program in future data analyses, but
possible if more detailed information can be obtained on land
management  practices within the different watersheds along
with continued water quality monitoring.
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