At the Confluence of GIS and Geochemistry: Identifying Geochemical Correlates of Ripley Engraved Caddo Ceramics

Robert Z. Selden Jr.
zselden@sfasu.edu

Timothy K. Perttula
Archeological & Environmental Consultants, LLC

Follow this and additional works at: https://scholarworks.sfasu.edu/crhr

Part of the Archaeological Anthropology Commons, Geochemistry Commons, and the Geology Commons

Tell us how this article helped you.

Repository Citation

https://scholarworks.sfasu.edu/crhr/16

This Presentation is brought to you for free and open access by the Center for Regional Heritage Research at SFA ScholarWorks. It has been accepted for inclusion in CRHR: Archaeology by an authorized administrator of SFA ScholarWorks. For more information, please contact cdssscholarworks@sfasu.edu.
Spatial Patterns in the Geochemistry of Ripley Engraved

Robert Z. Selden Jr., and Timothy K. Pertulla*

Center for Regional Historical Research, Stephen F. Austin State University
Archaeological and Environmental Consultants, LLC

INTRODUCTION

Over the last 17 years, 1308 instrumental neutron activation analysis (INAA) samples have been run on Caddo ceramic vessels recovered from 186 archaeological sites throughout the ancestral Caddo region. The Caddo INAA sample was produced by the University of Missouri Research Reactor (UMRR), and is only surpassed in size by datasets from the Valley of Mexico and the Mimbres and Jornada Mogollon regions of the American Southwest. However, the complex nature of this dataset presents a substantive challenge regarding the interpretation of geochemical results (see Ferguson 2010). These differ-

ences have led to a re-evaluation of the Caddo database by Murr (Ferguson et al. 2010), but challenges in determin-
in the geochemical variability in clays from across the ancestral Caddo region relies first upon well-known 15th to late 17th century A.D. Caddo ceramic type of Ripley Engraved (see Suhm and Jelks 1962).

The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962). Subsequent to this identifi-
cation, a calcium correction was applied only to geochemical results from shell- and bone-temped samples due to the ca-
descent of calcium-rich tempers to dilute certain elements associated with clays (Cogswell et al. 1998; Steponaitis et al. 1996). The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962).

The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962). Subsequent to this identifi-
cation, a calcium correction was applied only to geochemical results from shell- and bone-temped samples due to the ca-
descent of calcium-rich tempers to dilute certain elements associated with clays (Cogswell et al. 1998; Steponaitis et al. 1996). The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962).

The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962). Subsequent to this identifi-
cation, a calcium correction was applied only to geochemical results from shell- and bone-temped samples due to the ca-
descent of calcium-rich tempers to dilute certain elements associated with clays (Cogswell et al. 1998; Steponaitis et al. 1996). The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962).

The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962). Subsequent to this identifi-
cation, a calcium correction was applied only to geochemical results from shell- and bone-temped samples due to the ca-
descent of calcium-rich tempers to dilute certain elements associated with clays (Cogswell et al. 1998; Steponaitis et al. 1996). The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962).

The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962). Subsequent to this identifi-
cation, a calcium correction was applied only to geochemical results from shell- and bone-temped samples due to the ca-
descent of calcium-rich tempers to dilute certain elements associated with clays (Cogswell et al. 1998; Steponaitis et al. 1996). The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962).

The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962). Subsequent to this identifi-
cation, a calcium correction was applied only to geochemical results from shell- and bone-temped samples due to the ca-
descent of calcium-rich tempers to dilute certain elements associated with clays (Cogswell et al. 1998; Steponaitis et al. 1996). The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962).

The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962). Subsequent to this identifi-
cation, a calcium correction was applied only to geochemical results from shell- and bone-temped samples due to the ca-
descent of calcium-rich tempers to dilute certain elements associated with clays (Cogswell et al. 1998; Steponaitis et al. 1996). The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962).

The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962). Subsequent to this identifi-
cation, a calcium correction was applied only to geochemical results from shell- and bone-temped samples due to the ca-
descent of calcium-rich tempers to dilute certain elements associated with clays (Cogswell et al. 1998; Steponaitis et al. 1996). The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962).

The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962). Subsequent to this identifi-
cation, a calcium correction was applied only to geochemical results from shell- and bone-temped samples due to the ca-
descent of calcium-rich tempers to dilute certain elements associated with clays (Cogswell et al. 1998; Steponaitis et al. 1996). The methods we employ to illustrate geochemical variability in clays from across the ancestral Caddo region relies first upon well-known ceramic types of Ripley Engraved (see Suhm and Jelks 1962).