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Abstract

Topic modeling is an unsupervised method for
discovering semantically coherent combinations of
words, called topics, in unstructured text. However,
the human interpretability of topics discovered from
non-natural language corpora, specifically Windows
API call logs, is unknown. Our objective is to explore
the coherence of topics and their ability to represent the
themes of API calls from the perspective of malware
analysts. Three Latent Dirichlet Allocation (LDA)
models were fit to a collection of dynamic API call
logs. The topics were manually evaluated by malware
analysts. The results were then compared to existing
automated quality measures. Participants were able
to accurately determine API calls that did not belong
to topics learned by the 20 topic model. Our results
agree with topic coherence measures in terms of highest
interpretable topics. The results are not compatible with
log-perplexity, which concur with the findings of topic
evaluation literature on natural language corpora.

1. Introduction

The total number of new malware has increased
significantly in the past several years from less than
100 million in 2012 to over 900 million in 2019
[1]. Automated processes to analyze large collections
of malware are vital as manual investigation is time
consuming to cover this rapidly growing quantity of
malware. While the use of clustering algorithms to
group malware based on dynamic and/or static features
has been studied, simply clustering malware using
features extracted from static and dynamic analyses
does not provide insights into how malware are actually
grouped together. Features are usually difficult to
understand or the number of features used are too large
to be understood by humans.

As malware analysts continue to struggle with an
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ever growing quantity of malware to analyze, they
would benefit from automated systems that expedite
the malware characterization process by providing
meaningful summaries of malware behavioral themes
that assist further in-depth analyses. The development
of a model that captures the key behavioral themes
could help alleviate some of the time burden from
human malware analysts.

Probabilistic topic models have been widely
explored in the literature and used in many applications
[2, 3, 4]. Topic modeling is a group of unsupervised,
generative methods for characterizing unstructured
text with semantic topics [5]. Topic models have
been studied mainly with general natural language
corpora (i.e. Wikipedia, movie archives, and
newspaper articles). Existing studies have evaluated the
interpretability of topics with collections of documents
in natural language [3, 6, 7] but the interpretability of
topics obtained from application programming interface
(API) call logs has not been quantitatively evaluated
with human subjects. In the cybersecurity domain,
similarities between natural language and API calls are
recognized [8, 4, 9]. Each API call log consists of a
series of API calls the same way a document consists of
series of words. Each word has meanings depending on
the context around it or how it is used. For example,
NtClose, which is a routine used for closing object
handles, can be used with different object such as files
or registry keys. Additionally, some API calls could
be synonyms of other API calls (i.e. NtWriteFile and
ZwWriteFile) the same way words in natural language
could be synonyms. In our context, a topic can be
perceived as a behavioral theme, where each topic
represents semantically coherent combinations of API
calls (words). For example, DLL injection behavior can
be represented by the combination of NtOpenProcess,
NtAllocateVirtualMemory, NtWriteVirtualMemory, and
CreateRemoteThread API calls.

With similar characteristics between natural
language corpora and API call log collection, topic
modeling has been applied to generate topics as features
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for the purpose of classification [4, 9]. Providing
behavioral themes of malware directly to malware
analysts is a possible mechanism for automatic
characterization and information filtering of malware
behaviors. However, doing so would require topics
to be human interpretable and accurately reflect the
actual behaviors of malware. Currently, no studies
have investigated the interpretability of topic models
trained from API call logs. Our study addresses this
research gap by exploring the interpretability of topics
trained with Windows API call logs and evaluated by
human subjects. To understand Windows API call
logs, one has to have domain knowledge of Windows
malware reverse engineering. Specifically, they need to
understand what each API call does and which API calls
tend to appear together for certain behaviors. Therefore,
our study requires human assessors with specialized
domain knowledge in Windows malware analysis.

In this paper, we explore the interpretability of topic
models of Windows API calls with different numbers
of topics by human subjects with a background in
Windows malware analysis. We also compare the
results with automated quality measures of topic model
goodness and topic coherence. This study serves as a
preliminary baseline for applying topic modeling with
non-natural language corpora, specifically API call logs.
Our main goal is to show that topic modeling is able to
reveal semantically coherent behavioral themes that are
representative of Windows API call logs.

The rest of this paper is organized as follows.
Section 2 highlights background and related work.
Section 3 explains the study methodology, tools used for
collecting data, study subjects, and the quality measures
computed and used in this study. Section 4 presents
the quantitative results obtained as well as qualitative
and quantitative analysis of the results. Limitations of
the study are addressed in Section 5. Finally, section 6
summarizes the results, gives conclusions of the study,
and outlines possible future work.

2. Background

2.1. Malware Analysis

Malware analysis techniques are often divided into
two categories: static or dynamic. Static analysis
techniques examine the malware as a binary on disk.
This has the advantage of viewing the malware in its
entirety. The major drawback however is that the
malware may be obfuscated, often through the use of
software known as packers. Packers encrypt, compress,
or otherwise obfuscate the actual malicious code. Once
the packed malware is executed, it unpacks itself in

order to accomplish its task. Static analysis of a
packed malware sample only reveals details about the
packer itself, not the underlying malware. Any features
extracted from a packed sample are generally not useful
for characterizing the malware’s behavior [10].

Dynamic analysis techniques require the actual
execution of the malware. A malware sample is
typically executed in a controlled environment, either
emulated or virtualized, for a set period of time.
During this time, the malware is monitored and its
actions are recorded. This approach has the advantage
of determining exactly what code is executed by the
malware and seeing the impact it has on the system.
Additionally, some packed malware will unpack itself
at runtime and execute the underlying malicious code,
enabling a bypass of this protection.

In previous works using features extracted
from dynamic analysis [11, 12], the malware is
categorized, clustered, or grouped using various
machine learning algorithms with Windows API calls
and other information as features. Clustering algorithms
cluster malware into groups based on features. The
downside of clustering algorithms is they do not give
insights into how malware are actually grouped together
because features are usually hard to understand or too
large to comprehend by humans. Another common
way to group malware is to use family labels provided
by VirusTotal [13]. However, the labels are usually
inconsistent across multiple providers [14]. In addition,
the labels from these providers do not necessarily
reflect malware behaviors. For example, labels could
be based on the country of origin or packer used to
pack each malware. Categorizing malware based on
behaviors provides perspective of the overall behaviors
of each group of malware. Since we focus on the actual
behaviors of malware, we analyze dynamic API call
logs collected by running malware samples.

Topic modeling has been used in a number of studies
in the area of malware detection and classification. The
following studies applied topic modeling to the feature
extraction process for API call logs. Sundarkumar et
al. [4] proposed a malware detection method applying
LDA topics as features for their classification models.
A semi-supervised malware classification method was
proposed by Kolosnjaji et al. [9]. By joining the
results from static and dynamic analyses, they improved
the malware classification performance. In their study,
topic modeling was used as part of the dynamic analysis
to generate features to classify malware families. A
text classification method involving topic modeling
and Class Association Rule Mining (CARM) was
proposed by Kumar and Ravi [15]. They used topic
modeling during the dimensionality reduction process.
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To evaluate the performance of their method, malware
prediction was performed. Inspired by LDA, Xiao and
Stibor [8] proposed a probabilistic topic model to reveal
behavior patterns and perform malware classification.

2.2. Topic Modeling and Topic Evaluation

Latent semantics in unstructured documents have
been explored with various techniques. Latent Semantic
Analysis (LSA), Probabilistic Latent Semantic Analysis
(PLSA) and Latent Dirichlet Analysis (LDA) are the
major topic modeling techniques. All of them share the
same three basic assumptions [5, 16, 17]: (1) there exists
latent semantic structure, or topics, in documents; (2)
word-document co-occurrences are able to infer topics;
and (3) words are related to topics and topics are related
to documents. The difference between these techniques
are the underlying mathematical frameworks.

LSA applies singular value decomposition (SVD)
to a weighted document-term matrix to generate
a low-dimensional representation of words and
documents [16]. This representation can be further
used to find the similarity of words or documents.
PLSA uses a probabilistic method instead of SVD
[17]. Each document can be represented as a mixture
of word-generating topics. Expectation Maximization
(EM) is used to fit each PLSA model. Similarly,
LDA also represents documents as mixtures of
word-generating topics. However, LDA uses a
generative model for document-topic mixtures using a
Dirichlet prior on a documents’ topic distribution. LDA
assumes topics exist in a Dirichlet-distributed latent
space from which document multinomial topic mixtures
are drawn [5].

In general, topic evaluation is performed by
calculating various quality measures such as
log-perplexity [5] and topic coherence measures
[18, 19, 20]. Indirect evaluation can also be done by
combining topic models with classifiers [2, 21]. For
example, generated topics can be used as features in a
classification model. Then, the classification model can
be assessed using ground truths.

While the automated quality measures indicate
how well each topic model fits to data, they do
not necessarily reflect how well humans can interpret
the inferred topics. Measuring human interpretability
is a challenging task as automated quality measures
of topics do not necessarily agree with actual
semantic understanding [6, 7]. Evaluations of human
interpretability have been done mainly with natural
language corpora [6, 7, 3]. Chang et al. [6] proposed
two methods for judging human interpretability of
topic models: word intrusion and topic intrusion.

These methods quantitatively measure how well each
topic model generates semantically coherent topics and
representative document topic mixtures based on human
evaluators.

3. Methods

This work focuses on Windows API calls that
were recorded during dynamic analysis of the malware
sample. The overall process is shown in Figure 1. The
API call logs were collected using Cuckoo Sandbox.
The collected API call logs were preprocessed and then
fitted using LDA to create topic models at different
granularity levels. Word intrusion and topic intrusion
tasks used to evaluate human interpretability of topic
models were generated for each model and presented
to human evaluators. The performance of these tasks
were collected to calculate model precision and topic log
odds. These are explained in Section 3.4.

3.1. Data Collection

Cuckoo Sandbox is an automated dynamic analysis
sandbox capable of running files, monitoring their
behaviors, and recording this information [22]. Cuckoo
Sandbox records file creations and modifications,
registry modifications, process creation, and API calls.
For this study, we focused on Cuckoo Sandbox’s
ability to capture Windows API calls. Cuckoo Sandbox
monitors a malware’s API calls by injecting a dynamic
link library (DLL) into the process of the malware
during execution. Any processes spawned by the
initial malware sample will also have a DLL injected
into them. A modified version of Cuckoo Sandbox,
spender-sandbox, was used due to additional features
it contained beyond the standard Cuckoo Sandbox 1.2
[23].

To process malware, five hosts running ESXi 5.5.0
were used. Although the hardware varies slightly
between the hosts, two of them have 16 physical cores
and three of them have 20 physical cores and all five
have 128 Gib of RAM. Each host also has an adaptor
connected to an isolated network that the hosts share.
Each host contains a cuckoo node, a virtual machine
(VM) running CentOS 7 and Cuckoo Sandbox. Each
cuckoo node has 64 GiB of RAM and 28 virtual cores.
The Cuckoo nodes each have 20 Cuckoo agent VMs
within them. All together there are 100 Cuckoo agent
VMs managed by the five Cuckoo nodes.

Each cuckoo agent is a Windows 7 32-bit VM that
was managed using QEMU 2.5.1. The Windows VMs
are a fresh install of Windows 7 32-bit constructed with
512 MB of RAM, 1 CPU core, Adobe Reader 11, and
Python 2.7 installed. The Windows firewall and User
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Figure 1. Overall Process

Account Control were disabled.

The cuckoo agent VMs were each connected to an
isolated network that did not permit internet access.
A VM running INetSim [24] was deployed on this
network to simulate various network services (DNS,
HTTP, SMTP, etc.). Some malware samples will run
additional code upon detecting that these services exist.
This was viewed as a reasonable compromise between
data collection and ensuring the malware did not cause
any harm to the local network or other systems on the
internet. If a malware sample did not contact a command
and control server to obtain configuration information, it
would be unlikely to fully execute [25].

Our malware samples were gathered from
VirusShare [26]. From their 2015 to 2016 datasets,
we randomly selected 35,177 malware samples. Each
sample was analyzed using Cuckoo with a timeout of
five minutes and with terminate processes not set. Once
a sample finished processing, all recorded information
was stored in a report on the results server on the
isolated network. Our dataset consisted of Windows
API call logs of malware samples extracted from these
reports. The statistics regarding API calls are shown in
Table 1. Among all malware samples, we discarded 303
malware samples that had less than 20 API calls. We
use 20 as the threshold to distinguish inactive malware
samples from active ones. Inactive malware samples are
those malware binaries that did not perform any actions
in Cuckoo Sandbox. After discarding inactive malware
samples, our dataset consisted of API call logs from
34,874 malware samples.

Table 1. API Call Log Statistics.

API Calls
Average 89,851
Maximum 1,327,283
Minimum 2
Median 17,511
Unique 326

3.2. Preprocessing

The obtained API call logs were preprocessed to
remove API calls that are not meaningful. Meaningless
API calls are those that need to appear with other
context (i.e. port numbers and paths) for their
meanings to be interpretable. These API calls have
vague meanings in themselves and require additional
sematic context for their behaviors to be interpretable.
Examples of such API call are RegCreateKeyExW and
RegQueryValueExA, which require specific registry key
to be meaningful. Nearly all software running on a
Windows operating system will query the registry for
various values, but without knowing the specific key
being queried, the meaning is ambiguous.

In addition, any adjacent duplicate API calls
were removed and replaced with one API call.
For example, NtOpenFile NtReadFile NtReadFile
NtReadFile NtCloseFile was converted into NtOpenFile
NtReadFile NtCloseFile. We also removed any API
calls that appear in less than 10 API call logs
(documents). The resulting dataset contained 205
unique tokens and 2,385,248 total tokens.

3.3. Topic Models

Our goal is to establish a baseline of topic
interpretability of Windows API calls using LDA. Three
different models were fit to compare the interpretability
of different granularity levels. Those levels were 20
topics, 30 topics, and 40 topics. Models were fit in
bag-of-word transformation using Gensim 2.1.0 [27],
which was configured to process with 200 iterations, 5
passes, and 3000 chunksize in multi-processing mode.

3.4. Human Interpretability Tasks

In order to measure human interpretability of topics,
participants were asked to perform word intrusion and
topic intrusion tasks [6]. Our goal is to quantitatively
measure whether humans can find the “intrude” word
or topic presented to them. The results were
used to calculate two measures for evaluating human
interpretability of topic models. This is to evaluate
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Figure 2. Sample Word Intrusion Question. For this

task, the participants were asked to select an API call

that does not belong with the rest of the API calls.

whether LDA, which is commonly used to generate
topics from natural language document collections, can
also be used with API call logs.
3.4.1. Word Intrusion Task To construct a set of
word intrusion tasks, we randomly selected ten topics
for each model. Then, from each topic, the four most
probable words were selected. In addition to these
words, an intruder word was selected at random from
a pool of words with low probability in the current
topic. The intruding word is also required to have
high probability in some other topics. All five words
were shuffled and presented to the subjects. Figure 2
shows a sample word intrusion question presented to
the subjects and Table 2 shows five topics (out of ten)
and the intruder presented to the subjects for each topic
model.

In the context of API call logs, an API call is
equivalent to a word in natural language text and each
topic consists of multiple API calls representing a
behavioral theme. The model precision was calculated
from the results. The model precision is a quantitative
measure proposed by Chang et al. [6]. This measure
indicates the proportion of correct intruders found by the
participants; that is, how well the inferred topics match
human concepts.

More formally, let ωm
k be the index of the intruding

word for model m and topic k and imk,s be the index
of the intruding word selected by subject s, where S
represents the number of subjects. The model precision
is the fraction of subjects correctly selecting the intruder.

MPm
k =

1

S

∑
s

1(ωm
k = imk,s) (1)

The higher the model precision (MP) the better.
The upper bound of this measure is 1 meaning every
participant found every intruder correctly for a particular
topic model.

3.4.2. Topic Intrusion Task In this task, subjects
are shown a snippet from a document, or API call
log in our context. Along with the document they
are presented with three topics, where each topic
is represented by the six highest probability words
within that topic. Two of those topics are the highest
probability topics assigned to that document. The
intruder topic is chosen randomly from the other
low-probability topics in the model. We lowered the
number of topics and words from the original topic
intrusion task proposed by Chang et al. [6] because
of the time constraint. We believe that analyzing and
finding intruders in API call logs could be more time
consuming than analyzing and finding intruding topics
in natural language documents.

Similar to the word intrusion task, the subjects were
asked to select the topic they think does not agree with
the given document. A sample topic intrusion question
presented to the subjects are shown in the Figure 5. For
this task, the first four API calls in each topics were
highlighted in the given API call log presented to the
subjects to aid the participants in analyzing each API
call log.

Let θ̂md be the point estimate of the topic proportions

vector for document d of model m and θ̂md,s be the
intruding topic selected by subject s. In addition, let
θ̂md,∗ be the actual intruding topic and S represents the
number of subjects. The topic log odds (TLO) can be
calculated as:

TLOm
d =

1

S

∑
s

log θ̂md,∗ − log θ̂md,s (2)

High topic log odds indicate that the subjects agree
with the judgment of the model. The upper bound of
this measure is 0 meaning every participant found every
intruder correctly for a particular topic model.

3.5. Participants

In order to judge whether the topic model is learning
malware behavioral themes from collection of API call
logs, we needed to evaluate whether the inferred topics
are agreeable and interpretable by human malware
analysts. We also sought to compare the automated
quality measures to the metrics obtained from the
subjects of different models. This result can be used
as a baseline to determine which automated measures
are appropriate for choosing topic models of API calls.
Malware analysts were surveyed on the interpretability
of topics from three topic models using the word
intrusion and topic intrusion tasks. This study had
been reviewed and was granted exemption from IRB
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Table 2. Top 4 API calls from 5 topics for each model and random intruder used in the word intrusion task.
20 Topics
No. Top words (API calls) Intruder
1 LdrLoadDll, Process32NextW, NtClose, NtAllocateVirtualMemory HttpOpenRequestW
0 NtWaitForSingleObject, NtOpenSection, NtQueryFullAttributesFile, NtClose NtCreateFile
11 NtClose, NtQueryAttributesFile, NtReadFile, NtQueryInformationFile NtOpenKey
2 InternetReadFile, InternetCloseHandle, HttpOpenRequestW, InternetConnectW setsockopt
16 NtClose, NtCreateFile, NtOpenFile, NtReadFile NtWaitForSingleObject
30 Topics
No. Top words (API calls) Intruder
26 recv, select, NtClose, send NtSetInformationFile
12 NtClose, NtDeviceIoControlFile, NtOpenKey, NtQueryValueKey NtOpenFile
3 NtSetInformationFile, NtReadFile, NtWaitForSingleObject, NtClose NtOpenKey
20 NtCreateNamedPipeFile, NtOpenFile, NtClose, GetDiskFreeSpaceA LdrLoadDll
1 LdrLoadDll, NtAllocateVirtualMemory, NtClose, WriteProcessMemory InternetCloseHandle
40 Topics
No. Top words (API calls) Intruder
15 NtClose, NtCreateMutant, WriteProcessMemory, NtCreateFile NtOpenKey
33 CryptCreateHash, CryptHashData, NtClose, NtReadFile LdrLoadDll
18 Process32NextW, CreateToolhelp32Snapshot, NtClose, Process32FirstW NtWriteFile
35 CryptCreateHash, CryptHashData, setsockopt, NtClose NtReadFile
29 InternetReadFile, InternetCloseHandle, HttpOpenRequestW, InternetConnectW NtClose

approval.

For each model, ten randomly selected topics
(behavioral themes) and five randomly selected
documents (API call logs) were evaluated by the
subjects. The subjects were recruited via email and
tasks were performed via Google Forms. Each subject
received the same set of instructions on how to complete
the tasks. However, the order of word choices and topic
choices were shuffled.

3.6. Automated Quality Measures

Two automated metrics were computed to compare
model quality and topic coherence across models. The
first measure, log-perplexity[5], quantifies how well a
probabilistic model predicts a sample. In other words, it
is a theoretical measure of the quality of the model for
the word prediction task. To calculate log-perplexity,
the collection of API call logs was split randomly. We
used 80% of API call logs for training and 20% for
testing. The training and test sets were only used
for computing the log-perplexity for comparison across
models. Topic coherence (CV and CUMass) [18] are
two other measures that were computed. They are
known to have better performance than log-perplexity
in quantifying human interpretability of topics in natural
language corpora [18].

4. Results and Discussion

Table 3 contains the results of automated quality
measures, log-perplexity, and the topic coherence
metrics CV and CUMass. Lower log-perplexity
is desirable, whereas the higher topic coherence
measures the better topic interpretability. Based on
the log-perplexity computed, the quality of the model
increases as the number of topics increases. Similar
observations have been made in the existing literature
with natural language corpora [3, 6]. However, when we
look at topic coherence measures, which are common
automated measures of topic interpretability, the results
concur with the findings in the existing studies [6,
18]. In each of those studies, the trends of topic
coherence measures do not correspond to the trend
of log-perplexity. Based on both topic coherence
measures, the 20 topic model has the highest level of
interpretability and the 30 topic model has the lowest
interpretability.

Table 3. Log–perplexity and topic coherence
measures for different LDA models fit to API

call logs collection.

Topics Log–Perplexity CV CUMass

20 1.539 0.557 -0.376
30 1.534 0.543 -0.410
40 1.532 0.553 -0.389
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Figure 3. Model Precision

For the word intrusion and topic intrusion tasks,
there were 8 participants; each with domain knowledge
in Windows malware analysis. Among the participants,
37.5% of them have greater than two years of experience
in this specific area and the rest have two years of
experience or less.

Table 4. Model precision and topic log odds for
different LDA models fit to API call logs

collection.

Topics Model Precision Topic Log Odds
20 0.750 -0.124
30 0.588 -0.115
40 0.488 -0.082

Table 4 shows model precision and topic log odds
results of each model. For the word intrusion task,
the participants performed best in the 20 topic model.
The mean and median of model precision of each topic
model are shown in Figure 3, where a horizontal line
indicates a median and an x indicates a mean of model
precision.

In the 20 topic model precision, the median and
mean are as high as 0.94 and 0.75, respectively. This
indicates that the inferred topics in the 20 topic model
are highly coherent from the participants’ point of
view. However, we recognized a substantial difference
between these two values, where the mean was affected
by the missed responses.

In the 30 topic model, the model precision is 0.59
with the median and mean of 0.56 and 0.59, respectively,
suggesting that inferred topics of 30 topic model are
moderately coherent.

The performance of participants on word intrusion
task for 40 topic model is the lowest among all models.
Its model precision of 0.49 (both mean and median
are around 0.5) showing that the proportions of correct

intruder found and missed are about the same. When
comparing the model precision and topic coherence
measures across all models, all of them agree than the
20 topic model has the highest coherent topics among
all models.

When we looked at topics of the 20 topic
model, we found that most of them have a concise
meaning that each topic contains one sole behavioral
theme. An example of such a topic is a topic
representing file creation and manipulation behaviors
(NtQueryInformationFile, NtSetInformationFile,
NtClose, NtCreateFile) with the intruding API call
being NtWaitForSingleObject. All participants
correctly located the intruder for this particular topic.
Another example of a topic with one specific behavior
is socket communication (closesocket, setsockopt,
recvfrom, sendto). For this topic, every participant also
selected the correct intruder (NtReadFile).

However, when inferred topics contain disparate
or mutiple behaviors, it is difficult for human to
distinguish the behavioral theme(s). An example
of such behavioral themes is object handling and
file access (NtWaitForSingleObject, NtOpenSection,
NtQueryFullAttributeFile, NtClose), where “object” in
this context may not strictly represent a file. For this
topic, the true intruder is NtCreateFile, which could be
viewed as a non-intruder from the evaluators’ standpoint
since it is perceived as being related to files. We noticed
that in the 30 and 40 topic models, there are more topics
in which each topic contains more than one precise
behavioral theme compared to the 20 topic model. This
caused the performance of word intrusion task of these
two models to be lower than the 20 topic model.

Similar to natural language topic models, higher
granularity topics could be desirable for human to
interpret and to judge the quality of each topic.
For example, a topic for “reptiles” is more granular
than a topic for “animals”. From this example,
the first topic is less vague when it comes to
judging the detecting an intruder because the intruder
will be likely to stand out more when considering
it along with other words. In API call topic
models, an example of a higher granularity topic is
a topic specifically relating to file manipulation alone
(i.e. NtReadFile, NtWriteFile, NtQueryInformationFile,
NtClose) as opposed to a topic that involves file
tranferring and manipulation (i.e. NtClose, NtWriteFile,
InternetConnectA, InternetReadFile) because there is a
higher chance for a true intruder to be related to either
sub-topics in the given topic and therefore harder for the
subjects to detect a true intruder.

Based on the studies using natural language corpora
[3, 6], higher granularity topics could be achieved by

Page 6482



Figure 4. Topic Log Odds

increasing the number of topics. However, we found
that the effect is opposite with API call logs, where the
proportion of unique tokens per total tokens is much
smaller than general unique tokens in natural language
corpora (17,993 per 5,820,160 tokens in clinical reports
[3], 8,269 per one million tokens in 1987-2007 New York
Times articles, and 15,273 per three million tokens in
a sample of 10,000 articles from Wikipedia [6]). We
observed that as the number of topics increases, the
number of broader behavioral themes also increases
making it harder for participants to distinguish the
intruding API call.

For the topic intrusion task, the mean and median of
topic log odds of each topic model are shown in Figure
4. We observe that the trend of topic log odds deviates
from the trend of model precision across models. The
40 topic model achieved the highest mean topic log
odds among all three models, where the 20 topic model
has the lowest mean topic log odds. Interestingly, the
trend of topic log odds across all models is compatible
with log-perplexity suggesting that the 40 topic model
outperforms the other models in terms of how well the
generated behavior groups representing API call logs.
However, we noticed that the medians of topic log odds
of the 20 topic model and the 40 topic model are very
similar (-0.094 and -0.083, respectively) with both of
them being higher than the median topic log odds of the
30 topic model. Similar to the model precision result
of the 20 topic model, this skew in topic log odds of the
20 topic model caused by missed responses that affected
the mean of the results, which is known to be sensitive
to outliers.

To examine why the trends of topic log odds
and model precision results are not agreeable, we
looked into API call logs in which every participant

detected intruding topics correctly. We found that each
non-intruding topic does not necessarily contains one
sole behavioral theme. Figure 5 shows an example
of a document and topics presented to the subjects as
part of the topic intrusion task. The first non-intruding
topic involves driver loading and object handling with
“object” being a registry key. The other non-intruding
topic also consists of a combination of more than one
specific behavioral theme. The participants could still
indicate that the given API call log does not exhibit file
transmission, which is the intruding topic.

Although the results presented suggest that topic
models can learn interpretable API call logs from a
malware analysts’ perspective, there is much work to be
done to improve the rigor of the finding because of our
small sample size. With the ultimate goal being to apply
topic modeling into an automatic malware behavior
categorizing system, the tradeoffs between coherent
topics and the ability of topics to represent API call
logs should be determined because the trends of model
precision and topic log odds results are not compatible.
Moreover, with high growth rate of new malware and
numerous possibilities of behavioral themes regarding
what malware can do, it is challenging to address the
scalability of the system to improve the results in the
future.

5. Limitations

Due to the relative rarity of human subjects with
domain knowledge in Windows malware analysis, it
was difficult to find people with the requisite skills to
survey for the human interpretability portion of this
work. Participants should to be able to distinguish the
meanings of API calls and know which ones are related
the same way a general group of people should be able
to distinguish words in natural language text. They also
need to be able to judge whether the given documents
or API call logs exhibits the given topics or behavioral
themes. This led to a small sample size for the human
interpretability survey.

In order to study a large set of malware samples, it is
necessary to use an automated solution. Unfortunately
purely automated solutions may elicit limited output
from a given malware sample. This can be due to
a number of reasons. Some malware will examine
the system it is running in to determine if it is
being monitored. While our system was hardened to
prevent this to a degree, it is typically not possible to
make an automated, virtualized, analysis environment
completely undetectable. If malware determines it is
running inside a sandbox environment, it will often
simply exit or at least not demonstrate its full behavior.
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Figure 5. Sample Topic Intrusion Question. For this task, the participants were asked to select a group of API

calls that does not represent the behaviors exhibited in the given API call log.

Some malware requires data from the Internet in order
to fully operate. This may be an automated process
where it downloads a set of waiting commands that it
will execute, or it may be a more manual process where
the malware needs a human driving it in order to perform
various actions such as in the case of most remote access
trojans (RATs). Each of these scenarios results in the
malware not exhibiting its full capabilities.

6. Conclusion and Future Work

In this work, we have presented an exploratory study
to evaluate the interpretability of behavior themes or
topics and relevance of topic models learned from API
call logs using human ratings. The results were obtained
using a general topic model without any modifications
for API call logs or additional information from malware
analysis. The model precision results are not compatible
with log-perplexity, which concur the findings of
topic evaluation literature on natural language corpora.
However, model precision corresponds topic coherence
measures in terms of the highest interpretable topic
model. It is observed that the trend of topic log odds
does not agree with the trend of model precision across
models.

An additional study with a larger human sample
population and larger malware dataset to improve
the rigor of this finding is planned. The results
also encourage further investigation on customized
topic models to API call logs to improve the human
interpretability. Examining topic models with API
calls with other vector space models and different
transformations other than bag-of-word is another
possibility. The ability to include new topics constantly
when new malware samples are added should also be
explored.
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