Date of Award

12-2016

Degree Type

Thesis

Degree Name

Master of Science - Geology

Department

Geology

First Advisor

Dr. Kevin W. Stafford

Second Advisor

Dr. Wesley Brown

Third Advisor

Dr. Melinda Faulkner

Fourth Advisor

Dr. Joseph Musser

Abstract

The Gypsum Plain region of the Delaware Basin hosts approximately 1800 km2 of the Castile Formation outcrop. A myriad of karstic developments from closed sinkholes to large multi-kilometer cave systems have been documented within the region. Karst studies on the distribution and speleogenetic evolution within Castile strata began within the last decade with ever increasing data resolution. In this study, a combination of both physical field surveys and analyses of high resolution (~30 cm accuracy) LiDAR data was used to create a theoretical model for karst development across the region. This idealized model considers speleogenetic formation type variations (hypogene and epigene), the density of karstic features based on lithology variations, and the connection between the local hydrostratigraphic setting and the regional hydrogeological framework. Field studies included physical mapping of 20 km2 of the Gypsum Plain from the Castile’s western outcrop to where it dips into the subsurface to the east. These surface surveys involved the recording of all surfically-expressed karstic phenomena and the mapping of all enterable caves so that the speleogenetic evolution could be analyzed. The way in which hypogene and epigene caves are surfically expressed across the region indicates that many of the caves have been affected by either multi-stage epigenetic development or multi-stage hypogenetic development with epigenetic overprinting. Through the use of the methods outlined above, surficial karst manifestations vary across the region, from hypogenetic exposures in the west and epigenetic phreatic / vadose exposures in the east. Additionally, supplementary LiDAR data was used to create digital elevation models (DEM) so that the effectiveness of physical field surveys versus remote sensing techniques could be determined. Previous works in the area by Stafford et al., (2008b) determined that remote sensing preserved only 36% of all karstic features found through physical field surveys. Given today’s advancements in remote sensing accuracy, this study determined that on average LiDAR analysis identifies almost seven times more karstic features than physical surveys over a given area.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS

Tell us how this article helped you.

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.